您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 85-95.doi: 10.6040/j.issn.1671-9352.0.2023.162

• • 上一篇    

离散时间正规鞅泛函空间中幂计数算子的性质

周玉兰,魏万瑛,柳翠翠,杨青青   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-02-14
  • 作者简介:周玉兰(1978— ),女,副教授,博士,研究方向为随机分析. E-mail:zhouylw123@163.com
  • 基金资助:
    国家自然科学基金资助项目(12261080)

Properties of power-number operators in the functional space of discrete time normal martingale

ZHOU Yulan, WEI Wanying, LIU Cuicui, YANG Qingqing   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-02-14

摘要: 在正规鞅平方可积泛函空间L2(M)中引入一类稠定自伴线性算子aN,其中a是任意正实数,N是L2(M)中计数算子,称aN为N的a级幂计数算子。首先讨论aN的分析性质:给出aN有界的充要条件,且发现当aN有界时都是单位算子。其次给出aN是紧算子的充要条件;讨论{aN;a>0}的算子结构及其谱分析:aN的谱集是{an;n>0},其特征向量全体恰好构成L2(M)的一组标准正交基,且1是它们的公共谱点,对应1的唯一特征向量是L2(M)的真空态Z。然后讨论aN对a的依赖性。最后应用Γ-指标集量子Bernoulli噪声,对任意a∈(0,1),构造了aN的一致收敛序列,而当a>1时,构造了aN的强收敛序列。

关键词: 幂计数算子, 算子谱, 紧算子, Γ-指标集量子Bernoulli噪声, 算子收敛

Abstract: A class of densely defined self-adjoint linear operator aN is introduced in the functional space L2(M)of normal martingale square-integrable, where a is a positive number, and N is the number operator in L2(M), aN is called the a-level power-number operator of N. Firstly, the analytical properties of aN are discussed: a sufficient and necessary condition that aN is bounded is given, and in this case, {aN; 0≤1} are unit operator on L2(M). Secondly, aN is compact operator if and only if 0<1; the construction and the spectrum of {aN; a>0} are discussed: {an; a>0} is the spectrum of aN and all of its eigenvector forms an orthonormal basis of L2(M), 1 is the unique spectrum of {aN; a>0} and the vacuum Z is the unique common eigenvector of 1. And then the dependence of aN on a is discussed. Finally, a uniform convergence sequence of aN for a∈(0,1)and a strong convergence sequence of aN is constructed when a>1 by means of the quantum Bernoulli noise indexed by Γ.

Key words: power-number operator, operator spectrum, compact operator, Γ-index set quantum Bernoulli noise, operator convergence

中图分类号: 

  • O177
[1] BARNETT C, STREATER R F, WILDE I F. The It(^overo)-Cliford integral[J]. Journal of Functional Analysis, 1982, 48(2):172-212.
[2] APPLEBAUM D B, HUDSON R L. Fermion It(^overo)s formula and stochastic evolutions[J]. Communications in Mathematical Physics, 1984, 96(4):473-496.
[3] HUANG Z. Quantum white noises-White noise approach to quantum stochastic calculus [J]. Nagoya Mathematical Journal, 1993, 129:23-42.
[4] PRIVAULT N. Stochastic analysis of Bernoulli processes[J]. Probability Surveys, 2008, 5(1):435-483.
[5] WANG Caishi, LU Yanchun, CHAI Huifang. An alternative approach to Privaults discrete-time chaotic calculus[J]. Journal of Mathematical Analysis and Applications, 2011, 373(2):643-654.
[6] WANG Caishi, ZHANG Jihong. Wick analysis for Bernoulli noise functionals[J]. Journal of Function Spaces, 2014, 2014:727341.
[7] WANG Caishi, CHEN Jinshu. Quantum Markov semigroups constructcted from quantum Bernoulli noise[J]. Journal of Mathematical Physics, 2016, 57(2):023502.
[8] REN Suling, WANG Caishi, TANG Yuling. Quantum Bernoulli noises approach to stochastic Schr(·overo)dinger equation of exclusion type[J]. Journal of Mathematical Physics, 2020, 61(6):063509.
[9] HAN Qi, CHEN Zhihe, LU Ziqiang. Quantum entropy in terms of local quantum Bernoulli noises and related properties[J]. Communications in Statistics: Theory and Methods, 2022, 51(12):4210-4220.
[10] 周玉兰,薛蕊,程秀强. 广义计数算子的交换性质[J]. 山东大学学报(理学版),2021,56(4):94-101. ZHOU Yulan, XUE Rui, CHENG Xiuqiang. Commutative properties of generalized number operators[J]. Journal of Shandong University(Natural Science), 2021, 56(4):94-101.
[11] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2010, 51(5):53528.
[12] 周玉兰,程秀强,薛蕊. 广义修正随机梯度与广义Skorohod积分[J]. 吉林大学学报(理学版),2020,58(3):479-485. ZHOU Yulan, CHENG Xiuqiang, XUE Rui. Generalized modified stochastic gradient and generalized Skorohod integral[J]. Journal of Jilin University(Natural Science), 2020, 58(3):479-485.
[1] 庞永锋,李奔. Hilbert空间中数值域半径[J]. 《山东大学学报(理学版)》, 2024, 59(8): 34-41.
[2] 郑宇洁,刘爱芳. 局部交换子及其酉系统中的r-重游荡算子[J]. 《山东大学学报(理学版)》, 2024, 59(2): 120-126.
[3] 张晨,余维燕. 算子P+QP的数值域[J]. 《山东大学学报(理学版)》, 2023, 58(6): 92-98.
[4] 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67.
[5] 姜虎,曹小红. 算子函数的(ω)性质的判定[J]. 《山东大学学报(理学版)》, 2020, 55(10): 83-87.
[6] 冯高慧子,曹小红. 有界线性算子的a-Weyl定理的判定[J]. 《山东大学学报(理学版)》, 2020, 55(10): 88-94.
[7] 戴磊,黄小静,郭奇. 1)性质与单值扩张性质[J]. 《山东大学学报(理学版)》, 2019, 54(8): 55-61.
[8] 李春芳,孟彬. 测度框架的若干性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 99-104.
[9] 张莹,曹小红,戴磊. 有界线性算子的Weyl定理的判定[J]. 山东大学学报(理学版), 2018, 53(10): 82-87.
[10] 王俊芳,赵培浩. 带有梯度超线性项抛物方程黏性解的比较原理[J]. 山东大学学报(理学版), 2018, 53(8): 77-83.
[11] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[12] 周呈花, 巩万中, 张道祥. 赋Luxemburg范数下Orlicz-Bochner 空间的O-凸性[J]. 山东大学学报(理学版), 2018, 53(6): 44-52.
[13] 武鹂,张建华. 三角代数上Lie积为平方零元的非线性Jordan可导映射[J]. 山东大学学报(理学版), 2017, 52(12): 42-47.
[14] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[15] 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!