《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 66-74.doi: 10.6040/j.issn.1671-9352.0.2023.456
吴玉玲1,郑佳莉1,柯艺芬1,2,3*,许小芳1
WU Yuling1, ZHENG Jiali1, KE Yifen1,2,3*, XU Xiaofang1
摘要: 提出四元数体上的非对称Lanczos方法,基于此,给出求解Sylvester四元数矩阵方程AX+XB=C的全局四元数拟极小残量法。该方法能够有效降低算法执行过程中的存储空间,进一步,通过数值算例验证所提算法的可行性和有效性。
中图分类号:
| [1] SUN Y F, CHEN S Y, YIN B C. Color face recognition based on quaternion matrix representation[J]. Pattern Recognition Letters, 2011, 32(4):597-605. [2] ZOU C M, KOU K I, WANG Y L. Quaternion collaborative and sparse representation with application to color face recognition[J]. IEEE Transactions on Image Processing, 2016, 25(7):3287-3302. [3] JIANG T S. An algorithm for quaternionic linear equations in quaternionic quantum theory[J]. Journal of Mathematical Physics, 2004, 45(11):4218-4222. [4] CHEN Y Y, XIAO X L, ZHOU Y C. Low-rank quaternion approximation for color image processing[J]. IEEE Transactions on Image Processing, 2019, 29:1426-1439. [5] LANCZOS C. Solution of systems of linear equations by minimized iterations[J]. Journal of Research of the National Bureau of Standards, 1952, 49(1):33-53. [6] SAAD Y. Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1984, 5(1):203-228. [7] SAAD Y, SCHULTZ M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7:856-869. [8] FREUND R W, NACHTIGAL N M. QMR: a quasi-minimal residual method for non-Hermitian linear systems[J]. Numerische Mathematik, 1991, 60(1):315-339. [9] JBILOU K, MESSAOUDI A, SADOK H. Global FOM and GMRES algorithms for matrix equations[J]. Applied Numerical Mathematics, 1999, 31(1):49-63. [10] LI S K, HUANG T Z. A shifted complex global Lanczos method and the quasi-minimal residual variant for the Stein-conjugate matrix equation X+A(-overX)B=C[J]. Journal of Computational and Applied Mathematics, 2019, 357:1-11. [11] JIA Z G, NG M K. Structure preserving quaternion generalized minimal residual method[J]. SIAM Journal on Matrix Analysis and Applications, 2021, 42(2):616-634. [12] LI T, WANG Q W. Structure preserving quaternion full orthogonalization method with applications[J]. Numerical Linear Algebra with Applications, 2023:e2495. [13] LI Tao, WANG Qingwen, ZHANG Xinfang. Gl-QFOM and Gl-QGMRES: two efficient algorithms for quaternion linear systems with multiple right-hand sides[EB/OL].(2023-07-24)[2024-07-11]. http: //doi.org/10.48550/arXiv.2308.13214. [14] RODMAN L. Topics in quaternion linear algebra[M]. Princeton: Princeton University Press, 2014:37. [15] GHILONI R, MORETTI V, PEROTTI A. Continuous slice functional calculus in quaternionic Hilbert spaces[J]. Reviews in Mathematical Physics, 2013, 25(4):1350006. [16] BOUYOULI R, JBILOU K, SADAKA R, et al. Convergence properties of some block Krylov subspace methods for multiple linear systems[J]. Journal of Computational Applied Mathematics, 2006, 196(2):498-511. [17] University of Florida Sparse Matrix Collection web page[EB/OL].(2011-03-11)[2024-07-11]. https://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html. |
| [1] | 樊学玲,李莹,赵建立,刘志红. 求解四元数线性系统的一种新方法[J]. 《山东大学学报(理学版)》, 2023, 58(4): 55-64. |
| [2] | 廖青清,郭继东,张良. 一类内交换p-群与四元数群之间的同态个数[J]. 《山东大学学报(理学版)》, 2022, 57(2): 45-49. |
| [3] | 丁文旭,李莹,王栋,赵建立. 求解四元数矩阵方程的矩阵半张量积方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 103-110. |
| [4] | 曹美虹,张建华Symbol`@@. 四元数环上的Jordan和Lie中心化子[J]. 《山东大学学报(理学版)》, 2021, 56(12): 67-71. |
| [5] | 李凤娇,高百俊. 两类非交换群之间的同态数量[J]. 《山东大学学报(理学版)》, 2020, 55(12): 25-29. |
| [6] | 杨柳,马晶. Hamilton四元数除环上群环的Armendariz性质[J]. 《山东大学学报(理学版)》, 2020, 55(1): 1-4. |
| [7] | 凌思涛 程学汉 魏木生. 一般线性四元数矩阵方程的Hermite解[J]. J4, 2008, 43(12): 1-4. |
| [8] | 赵建立,李 莹,张丽梅 . 四元数矩阵的OR分解及等式约束最小二乘问题[J]. J4, 2007, 42(6): 65-68 . |
|