您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 66-74.doi: 10.6040/j.issn.1671-9352.0.2023.456

• • 上一篇    下一篇

求解四元数矩阵方程AX+XB=C的全局拟极小残量法

吴玉玲1,郑佳莉1,柯艺芬1,2,3*,许小芳1   

  1. 1.福建师范大学数学与统计学院, 福建 福州 350117;2.福建师范大学分析数学及应用教育部重点实验室, 福建 福州 350117;3.福建省应用数学中心, 福建 福州 350117
  • 发布日期:2025-12-10
  • 通讯作者: 柯艺芬(1989— ),女,副研究员,博士,研究方向为数值代数及其应用. E-mail:keyifen@fjnu.edu.cn
  • 作者简介:吴玉玲(1999— ),女,硕士研究生,研究方向为数值代数及其应用. E-mail:wuyl0310@163.com*通信作者:柯艺芬(1989— ),女,副研究员,博士,研究方向为数值代数及其应用. E-mail:keyifen@fjnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12371378,11901098);福建省自然科学基金项目(2023J011127,2023J01955,2020J05034)

Global quasi-minimal residual method for solving quaternion matrix equation AX+XB=C

WU Yuling1, ZHENG Jiali1, KE Yifen1,2,3*, XU Xiaofang1   

  1. 1. School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117, Fujian, China;
    2. Key Laboratory of Analytical Mathematical and Applications(Ministry of Education), Fujian Normal University, Fuzhou 350117, Fujian, China;
    3. Center for Applied Mathematics of Fujian province(FJNU), Fuzhou 350117, Fujian, China
  • Published:2025-12-10

摘要: 提出四元数体上的非对称Lanczos方法,基于此,给出求解Sylvester四元数矩阵方程AX+XB=C的全局四元数拟极小残量法。该方法能够有效降低算法执行过程中的存储空间,进一步,通过数值算例验证所提算法的可行性和有效性。

关键词: 四元数, Sylvester矩阵方程, 非对称Lanczos方法, 全局四元数拟极小残量法

Abstract: In this paper, the quaternion nonsymmetric Lanczos method is proposed. Based on this method, the global quaternion quasi-minimum residual method is established for solving the Sylvester quaternion matrix equation AX+XB=C, which can effectively reduce the storage space during algorithm execution. Further, some numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method.

Key words: quaternion, Sylvester matrix equation, nonsymmetric Lanczos method, global quaternion quasi-minimal residual method

中图分类号: 

  • O241
[1] SUN Y F, CHEN S Y, YIN B C. Color face recognition based on quaternion matrix representation[J]. Pattern Recognition Letters, 2011, 32(4):597-605.
[2] ZOU C M, KOU K I, WANG Y L. Quaternion collaborative and sparse representation with application to color face recognition[J]. IEEE Transactions on Image Processing, 2016, 25(7):3287-3302.
[3] JIANG T S. An algorithm for quaternionic linear equations in quaternionic quantum theory[J]. Journal of Mathematical Physics, 2004, 45(11):4218-4222.
[4] CHEN Y Y, XIAO X L, ZHOU Y C. Low-rank quaternion approximation for color image processing[J]. IEEE Transactions on Image Processing, 2019, 29:1426-1439.
[5] LANCZOS C. Solution of systems of linear equations by minimized iterations[J]. Journal of Research of the National Bureau of Standards, 1952, 49(1):33-53.
[6] SAAD Y. Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1984, 5(1):203-228.
[7] SAAD Y, SCHULTZ M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7:856-869.
[8] FREUND R W, NACHTIGAL N M. QMR: a quasi-minimal residual method for non-Hermitian linear systems[J]. Numerische Mathematik, 1991, 60(1):315-339.
[9] JBILOU K, MESSAOUDI A, SADOK H. Global FOM and GMRES algorithms for matrix equations[J]. Applied Numerical Mathematics, 1999, 31(1):49-63.
[10] LI S K, HUANG T Z. A shifted complex global Lanczos method and the quasi-minimal residual variant for the Stein-conjugate matrix equation X+A(-overX)B=C[J]. Journal of Computational and Applied Mathematics, 2019, 357:1-11.
[11] JIA Z G, NG M K. Structure preserving quaternion generalized minimal residual method[J]. SIAM Journal on Matrix Analysis and Applications, 2021, 42(2):616-634.
[12] LI T, WANG Q W. Structure preserving quaternion full orthogonalization method with applications[J]. Numerical Linear Algebra with Applications, 2023:e2495.
[13] LI Tao, WANG Qingwen, ZHANG Xinfang. Gl-QFOM and Gl-QGMRES: two efficient algorithms for quaternion linear systems with multiple right-hand sides[EB/OL].(2023-07-24)[2024-07-11]. http: //doi.org/10.48550/arXiv.2308.13214.
[14] RODMAN L. Topics in quaternion linear algebra[M]. Princeton: Princeton University Press, 2014:37.
[15] GHILONI R, MORETTI V, PEROTTI A. Continuous slice functional calculus in quaternionic Hilbert spaces[J]. Reviews in Mathematical Physics, 2013, 25(4):1350006.
[16] BOUYOULI R, JBILOU K, SADAKA R, et al. Convergence properties of some block Krylov subspace methods for multiple linear systems[J]. Journal of Computational Applied Mathematics, 2006, 196(2):498-511.
[17] University of Florida Sparse Matrix Collection web page[EB/OL].(2011-03-11)[2024-07-11]. https://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html.
[1] 樊学玲,李莹,赵建立,刘志红. 求解四元数线性系统的一种新方法[J]. 《山东大学学报(理学版)》, 2023, 58(4): 55-64.
[2] 廖青清,郭继东,张良. 一类内交换p-群与四元数群之间的同态个数[J]. 《山东大学学报(理学版)》, 2022, 57(2): 45-49.
[3] 丁文旭,李莹,王栋,赵建立. 求解四元数矩阵方程的矩阵半张量积方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 103-110.
[4] 曹美虹,张建华Symbol`@@. 四元数环上的Jordan和Lie中心化子[J]. 《山东大学学报(理学版)》, 2021, 56(12): 67-71.
[5] 李凤娇,高百俊. 两类非交换群之间的同态数量[J]. 《山东大学学报(理学版)》, 2020, 55(12): 25-29.
[6] 杨柳,马晶. Hamilton四元数除环上群环的Armendariz性质[J]. 《山东大学学报(理学版)》, 2020, 55(1): 1-4.
[7] 凌思涛 程学汉 魏木生. 一般线性四元数矩阵方程的Hermite解[J]. J4, 2008, 43(12): 1-4.
[8] 赵建立,李 莹,张丽梅 . 四元数矩阵的OR分解及等式约束最小二乘问题[J]. J4, 2007, 42(6): 65-68 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101 -106 .
[2] 李世龙,张云峰 . 一类基于算术均差商的有理三次插值样条的逼近性质[J]. J4, 2007, 42(10): 106 -110 .
[3] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[4] 张晓,张玉臻,刘军军,刘红蕾*. 不同碳源下Pseudomonas putida F1单环芳烃降解相关蛋白质的差异表达[J]. J4, 2013, 48(05): 14 -19 .
[5] 王文康 . 矩阵环的极大的广义Armendariz子环[J]. J4, 2007, 42(8): 74 -78 .
[6] 庞观松,张黎莎,蒋盛益*,邝丽敏,吴美玲. 一种基于名词短语的检索结果多层聚类方法[J]. J4, 2010, 45(7): 39 -44 .
[7] 王俊新. 几则有限群可解的条件[J]. J4, 2009, 44(8): 35 -38 .
[8] 董新梅 . 函数δk(n)r次方误差项的阶及均值估计[J]. J4, 2006, 41(5): 91 -94 .
[9] 潘振宽,魏伟波,张海涛 . 基于梯度和拉普拉斯算子的图像扩散变分模型[J]. J4, 2008, 43(11): 11 -16 .
[10] 杨必成. 一个零齐次核的Hilbert型积分不等式[J]. J4, 2010, 45(2): 103 -106 .