《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 150-162.doi: 10.6040/j.issn.1671-9352.0.2025.121
• • 上一篇
苏元腾,王家一,李瑞晶,李明璐,黄圣第,郭梦露,王晓琳*
SU Yuanteng, WANG Jiayi, LI Ruijing, LI Minglu, HUANG Shengdi, GUO Menglu, WANG Xiaolin*
摘要: 基于表面活性剂的自组装构筑超分子凝胶材料是制备功能软物质材料的重要方式。在锌离子的金属配位主驱动下,辅以氢键和疏溶剂等其他分子间的非共价相互作用,一种阴离子型糖基表面活性剂在质子型离子液体硝酸乙铵(EAN)中自组装形成纤维状三维网络结构,深入探索离子凝胶的形成机理、微观形貌与宏观性能,证实该类离子凝胶作为表皮电极对人体电生理信号的高质量监测效果,拓展超分子凝胶材料的应用范围。
中图分类号:
[1] CUI H H, LI J G. Hydrogel adhesives for tissue recovery[J]. Advances in Colloid and Interface Science, 2025, 341:103496. [2] JIANG L C, SHA Z H, ZHENG Y, et al. Bioinspired hydrogels thriving in harsh conditions: where soft materials conquer hard challenges[J]. Progress in Materials Science, 2025, 152:101459. [3] LEI C X, LI Q, CHEN W S, et al. Biopolymeric gels: advancements in sustainable multifunctional materials[J]. Advanced Materials, 2025, 37(22):2419906. [4] FENG W W, SUN L, JIN Z K, et al. A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot[J]. Nature Communications, 2024, 15:4222. [5] HE X N, ZHANG B, LIU Q J, et al. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance[J]. Nature Communications, 2024, 15:6431. [6] GUO M R, ZHAO X J, XU J H, et al. Nanoscale control of morphologies enables robust and elastic ionogel for sensitive and high-resolution pressure sensing over wide linear range[J]. Chemical Engineering Journal, 2025, 508:160913. [7] SU L, MOSQUERA J, MABESOONE M F J, et al. Dilution-induced gel-sol-gel-sol transitions by competitive supramolecular pathways in water[J]. Science, 2022, 377(6602):213-218. [8] BIANCO S, HALLAM STEWART F, PANJA S, et al. Forging out-of-equilibrium supramolecular gels[J]. Nature Synthesis, 2024, 3(12):1481-1489. [9] ADAMS D J. Personal perspective on understanding low molecular weight gels[J]. Journal of the American Chemical Society, 2022, 144(25):11047-11053. [10] CRIADO-GONZALEZ M, ALEGRET N, FRACAROLI A M, et al. Mixed conductive, injectable, and fluorescent supramolecular eutectogel composites[J]. Angewandte Chemie International Edition, 2023, 62(26):e202301489. [11] WANG Z J, LI W, LI X Y, et al. Rapid self-strengthening in double-network hydrogels triggered by bond scission[J]. Nature Materials, 2025, 24(4):607-614. [12] ZHANG C W, SI M Q, CHEN C, et al. Hierarchical engineering for biopolymer-based hydrogels with tailored property and functionality[J]. Advanced Materials, 2025, 37(22):2414897. [13] LI X Y, GONG J P. Design principles for strong and tough hydrogels[J]. Nature Reviews Materials, 2024, 9(6):380-398. [14] LOU X Y, ZHANG K, BAI Y J, et al. Self-assembled nanohelixes driven by host-guest interactions and metal coordination[J]. Angewandte Chemie International Edition, 2025, 64(2):e202414611. [15] ZHAO Z H, CHEN S Y, ZHAO P C, et al. Mechanically adaptive polymers constructed from dynamic coordination equilibria[J]. Angewandte Chemie International Edition, 2024, 63(17):e202400758. [16] WU S J, LIU Z, GONG C H, et al. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties[J]. Nature Communications, 2024, 15:4441. [17] KANG B B, TANG H C, GAO M, et al. Fluorescent hydrogel producing ZnO for colorimetric detection of glutathione and cysteine[J]. Advanced Materials Interfaces, 2021, 8(20):2100765. [18] WANG Y, XIE Y J, XIE X Y, et al. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure[J]. Advanced Functional Materials, 2023, 33(12):2210224. [19] KWON J H, HONG S H, LEE G R, et al. Synergistic dual-cross-linking gelation: exploring the impact of metal-ligand complexation on ionogel performance[J]. ACS Applied Materials & Interfaces, 2024, 16(44):61115-61122. [20] YAN C C, LI W Z, LIU Z Y, et al. Ionogels: preparation, properties and applications[J]. Advanced Functional Materials, 2024, 34(17):2314408. [21] HUANG C Y, JIA X H, WANG D, et al. Stretchable ionogels: Recent advances in design, toughening mechanisms, material properties and wearable devices applications[J]. Chemical Engineering Journal, 2024, 490:151850. [22] LUO Z H, LI W J, YAN J P, et al. Roles of ionic liquids in adjusting nature of ionogels: a mini review[J]. Advanced Functional Materials, 2022, 32:2203988. [23] QIU Z F, WANG X L, WANG T T, et al. Stretchable and self-healable double-network ionogel with strong adhesion and temperature tolerance for information encryption[J]. Journal of Molecular Liquids, 2022, 351:118626. [24] ZHANG M W, ZHAO L Y, TIAN F, et al. Bionic artificial skin based on self-healable ionogel composites with tailored mechanics and robust interfaces[J]. Advanced Materials, 2024, 36(35):2405776. [25] ZHAO Y N, ZENG Q T, JIANG C C, et al. Self-powered, durable and high fire-safety ionogel towards Internet of Things[J]. Nano Energy, 2023, 116:108785. [26] YANG M L, LI J H, WANG C Y, et al. Robust mechanically interlocked network ionogels[J]. Angewandte Chemie International Edition, 2025, 64(15):e202423847. [27] WANG J Y, ZHANG S L, LI L L, et al. Glassy ionogels with high compressibility and strength for impact protection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122(15):e2417978122. [28] YE H T, WU B H, SUN S T, et al. Self-compliant ionic skin by leveraging hierarchical hydrogen bond association[J]. Nature Communications, 2024, 15:885. [29] EVANS D F, YAMAUCHI A, WEI G J, et al. Micelle size in ethylammonium nitrate as determined by classical and quasi-elastic light scattering[J]. The Journal of Physical Chemistry, 1983, 87(18):3537-3541. [30] FUMINO K, WULF A, LUDWIG R. Hydrogen bonding in protic ionic liquids: reminiscent of water[J]. Angewandte Chemie International Edition, 2009, 48(17):3184-3186. [31] SALVATI MANNI L, DAVIES C, WOOD K, et al. Unusual phosphatidylcholine lipid phase behavior in the ionic liquid ethylammonium nitrate[J]. Journal of Colloid and Interface Science, 2023, 643:276-281. [32] ZHANG J Y, GUO M R, SU Y T, et al. Photochromic ionogel with a wide temperature range and fatigue resistance for high-resolution rewritable information record[J]. Chemical Engineering Journal, 2024, 495:153263. [33] TANTALA J, LOYAWATTANANAN S, BOONPRAKOBSAK P, et al. Antilisterial effect of alkyl polyglycosides biosurfactant and modes of action[J]. International Journal of Biological Macromolecules, 2024, 280:135607. [34] GREAVES T L, DRUMMOND C J. Ionic liquids as amphiphile self-assembly media[J]. Chemical Society Reviews, 2008, 37(8):1709-1726. [35] GREAVES T L, DRUMMOND C J. Protic ionic liquids: properties and applications[J]. Chemical Reviews, 2008, 108(1):206-237. [36] CHANDLER D. Interfaces and the driving force of hydrophobic assembly[J]. Nature, 2005, 437(7059):640-647. [37] WANG H Q, SONG S S, HAO J C, et al. Hydrogels triggered by metal ions as precursors of network CuS for DNA detection[J]. Chemistry, 2015, 21(34):12194-12201. [38] ESTROFF L A, HAMILTON A D. Water gelation by small organic molecules[J]. Chemical Reviews, 2004, 104(3):1201-1218. [39] SONG S S, SONG D D, TANG H C, et al. Ionogels as precursors to prepare ZnS nanoparticles for colorimetric sensing of sulfide ions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2):759-770. [40] YANG D D, XIA S W, BAO M T, et al. A new class of amide-based organogels: from oil spill recovery to self-assembly structure analysis[J]. Journal of Materials Chemistry A, 2023, 11(12):6181-6190. [41] YUAN J, WU W N, GUO L X, et al. Multistimuli-responsive and antifreeze aggregation-induced emission-active gels based on CuNCs[J]. Langmuir, 2022, 38(1):343-351. [42] LIANG Y J, WANG K F, LI J J, et al. Low-molecular-weight supramolecular adhesives based on non-covalent self-assembly of a small molecular gelator[J]. Materials Horizons, 2022, 9(6):1700-1707. [43] ZHOU K J, TANG L, KUANG G Q, et al. Supramolecular ionogels enable highly efficient electrochromism[J]. Materials Horizons, 2025, 12(6):1992-2001. [44] LI X Y, LI Q T, LEI N N, et al. Luminescent sodium deoxycholate ionogel induced by Eu3+ in ethylammonium nitrate[J]. ACS Omega, 2019, 4(1):2437-2444. [45] RODDY G P T, MANNI L S, ATKIN R, et al. 12-Hydroxyoctadecanoic acid forms two kinds of supramolecular gels in nanostructured protic ionic liquids[J]. Journal of Colloid and Interface Science, 2025, 691:137384. [46] CHEN T L, YE G, WU H W, et al. Highly conductive and underwater stable ionic skin for all-day epidermal biopotential monitoring[J]. Advanced Functional Materials, 2022, 32(46):2206424. [47] WANG S, CHENG H L, YAO B, et al. Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(17):20735-20745. [48] YUK H, LU B Y, ZHAO X H. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6):1642-1667. [49] TANG H, LI Y F, CHEN B Q, et al. In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise[J]. ACS Nano, 2022, 16(11):17931-17947. [50] HUANG X X, CHEN C W, MA X H, et al. In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal electrodes[J]. Advanced Functional Materials, 2023, 33(38):2302846. [51] YANG G G, ZHU K H, GUO W, et al. Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion[J]. Advanced Functional Materials, 2022, 32(29):2200457. [52] RATMANOVA N K, POSVYATENKO A V, LEVINA I I, et al. Cytotoxicity of multi-purpose protic ionic liquids towards human dermal fibroblasts[J]. Journal of Molecular Liquids, 2025, 433:127948. |
[1] | 高娟,王晓琳,HOFFMANN Heinz,郝京诚. 离子液体凝胶[J]. 《山东大学学报(理学版)》, 2019, 54(1): 1-18. |
[2] | 张耀军,万刚强,颜磊,马庆昌,李东祥,赵继宽. 种子生长法制备ZnO纳米棒组装结构[J]. 山东大学学报(理学版), 2016, 51(1): 14-19. |
[3] | 赵国平,陈国辉 . CTAB/正丁醇/正庚烷/水微乳体系稳定性研究[J]. J4, 2007, 42(11): 19-22 . |
[4] | 周松,宁华龙,陈相燕,冯玉娇,徐文龙. 自供电水凝胶传感器及其应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 79-104. |
[5] | 韩心昕,李梦琦,张培育,崔基炜. 生物型表面活性剂的合成与应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 13-22. |
[6] | 朱元宇,赵洪德,赵芷晴,王新昊,王继乾,王栋. 墨鱼黑色素纳米球pH响应机制及其对毛鳞片光保护的影响[J]. 《山东大学学报(理学版)》, 2025, 60(10): 127-140. |
[7] | 冯圣玉,谌梓煦,王灯旭. 聚硅氧烷基荧光材料[J]. 《山东大学学报(理学版)》, 2021, 56(10): 99-112. |
[8] | 李广乐,闫学海. 生物分子凝聚体的界面张力[J]. 《山东大学学报(理学版)》, 2025, 60(10): 1-12. |
[9] | 马文超,杜娜,侯万国. 液体均相混合物的表面张力及吸附行为[J]. 《山东大学学报(理学版)》, 2025, 60(10): 105-116. |
[10] | 蒋晓倩,孙秀萍,宋爱新. 表面活性剂和纳米颗粒稳定的双重乳液凝胶[J]. 《山东大学学报(理学版)》, 2025, 60(10): 141-149. |
[11] | 刘欣怡,李洁龄,王安河,李琦,白硕. 丝素蛋白增强的肽自组装水凝胶的制备及其在肿瘤类器官构建中的应用[J]. 《山东大学学报(理学版)》, 2025, 60(10): 117-126. |
|