您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (10): 23-37.doi: 10.6040/j.issn.1671-9352.9.2021.003

• • 上一篇    

关于Fermat型函数方程的问题

扈培础,吴琳琳   

  1. 山东大学数学学院, 山东 济南 250100
  • 发布日期:2021-09-28
  • 作者简介:HU Pei-chu(1961— ), Male, Professor, Research Interests: complex analysis functions of one complex variable differential geometry. E-mail:pchu@sdu.edu.cn

Topics in Fermat-type functional equations

HU Pei-chu, WU Lin-lin   

  1. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Published:2021-09-28

摘要: 介绍了Fermat型函数方程(组)的一系列问题,包括差分-微分、偏微分、非阿基米德域等方面的一些结果。

关键词: Fermat型函数方程, 方程组, 偏微分方程, Malmquist型定理, 非阿基米德域

Abstract: In this paper, we introduce some propositions of Fermat-type functional equations.

Key words: Fermat-type functional equation, system, partial differential equation, Malmquists theorem, non-Archimedean fields

中图分类号: 

  • O174.5
[1] BAKER I N. On a class of meromorphic functions[J]. Proceedings of the American Mathematical Society, 1966, 17(4):819-822. doi:10.1090/s0002-9939-1966-0197732-x.
[2] CHEN M F, GAO Z S. Entire solutions of differential-difference equation and Fermat type q-difference differential equations[J]. Communications of the Korean Mathematical Society, 2015, 30(4):447-456. doi:10.4134/ckms.2015.30.4.447.
[3] FORD L R. Automorphic functions[M]. New York:[s.n.] , 1951: 229-240.
[4] GAO L Y. On entire solutions of two types of systems of complex differential-difference equations[J]. Acta Mathematica Scientia, 2017, 37(1):187-194. doi:10.1016/S0252-9602(16)30124-2.
[5] GROSS F. On the equation f n+gn=1[J]. Bulletin of the American Mathematical Society, 1966, 72(1):86-89. doi:10.1090/s0002-9904-1966-11429-5.
[6] GROSS F. On the equation f n+gn=hn[J]. Amer Math Monthy, 1966, 73:1093-1096.
[7] GUNDERSEN G G, HAYMAN W K. The strength of cartans version of Nevanlinna theory[J]. Bulletin of the London Mathematical Society, 2004, 36(4):433-454. doi:10.1112/s0024609304003418.
[8] HALBURD R G, KORHONEN R J. Nevanlinna theory for the difference operation[J]. Ann Acad Sci Fenn Math, 2006, 31:463-478.
[9] HALBURD R G, KORHONEN R J. Difference analogue of the Lemma on the logarithmic derivative with applications to difference equations[J]. Journal of Mathematical Analysis and Applications, 2006, 314(2):477-487. doi:10.1016/j.jmaa.2005.04.010.
[10] HALBURD R, KORHONEN R. Value distribution and linear operators[J]. Proceedings of the Edinburgh Mathematical Society, 2014, 57(2):493-504. doi:10.1017/s0013091513000448.
[11] HAN Q, LÜ F. On the functional equation f n(z)+gn(z)=eαz+β[EB/OL]. [2016-03-30]. arXiv:1612.06842v1.
[12] HAYMAN W K. Warings problem für analytische Funktionen[J]. Bayer Akad Wiss Math Natur Kl. Sitzungsber, 1985,1984:1-13.
[13] HU P C, LI B Q. On meromorphic solutions of nonlinear partial differential equations of first order[J]. Journal of Mathematical Analysis and Applications, 2011, 377(2):881-888. doi:10.1016/j.jmaa.2010.12.004.
[14] HU P C, LI B Q. On meromorphic solutions of linear partial differential equations of second order[J]. Journal of Mathematical Analysis and Applications, 2012, 393(1):200-211. doi:10.1016/j.jmaa.2012.03.012.
[15] HU P C, LI B Q. A note on meromorphic solutions of linear partial differential equations of second order[J]. Complex Analysis and Operator Theory, 2014, 8(6):1173-1182. doi:10.1007/s11785-013-0314-6.
[16] HU P C, LI B Q. On complex solutions of certain partial differential equations[J]. Complex Variables and Elliptic Equations, 2017, 62(10):1492-1505. doi:10.1080/17476933.2017.1316978.
[17] HU P C, WANG Q. On meromorphic solutions of functional equations of Fermat type[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(5):2497-2515. doi:10.1007/s40840-018-0613-1.
[18] HU P C, YANG C C. Uniqueness of meromorphic functions on Cm[J]. Complex Variables, Theory and Application: an International Journal, 1996, 30(3):235-270. doi:10.1080/17476939608814926.
[19] HU P C, YANG C C. Meromorphic functions over non-archimedean fields[M]. The Netherlands: Kluwer Academic Publishers, 2000.
[20] KHAVINSON D. A note on entire solutions of the eiconal equation[J]. The American Mathematical Monthly, 1995, 102(2):159-161. doi:10.1080/00029890.1995.11990551.
[21] KORHONEN R, ZHANG Y Y. Existence of meromorphic solutions of first-order difference equations[J]. Constructive Approximation, 2020, 51(3):465-504. doi:10.1007/s00365-019-09491-0.
[22] LI B Q. On meromorphic solutions of f 2+g2=1[J]. Math Z, 2008, 258:763-771.
[23] LI B Q. On meromorphic solutions of generalized Fermat equations[J]. International Journal of Mathematics, 2014, 25(1):1450002. doi:10.1142/s0129167x14500025.
[24] LI B Q. On entire solutions of Fermat type partial differential equations[J]. International Journal of Mathematics, 2004, 15(5):473-485. doi:10.1142/s0129167x04002399.
[25] LI B Q, LÜ F. On entire solutions of a pythagorean functional equation and associated PDEs[J]. Complex Analysis and Operator Theory, 2020, 14(4):1-11. doi:10.1007/s11785-020-01007-0.
[26] LI P, YANG C C. Some further results on the unique range sets of meromorphic functions[J]. Kodai Mathematical Journal, 1995, 18(3):437-450. doi:10.2996/kmj/1138043482.
[27] LIU K. Meromorphic functions sharing a set with applications to difference equations[J]. Journal of Mathematical Analysis and Applications, 2009, 359(1):384-393. doi:10.1016/j.jmaa.2009.05.061.
[28] LIU K, CAO T B, CAO H Z. Entire solutions of Fermat type differential-difference equations[J]. Archiv Der Mathematik, 2012, 99(2):147-155. doi:10.1007/s00013-012-0408-9.
[29] LIU K, DONG X J. Fermat type differential and difference equations[J]. Electron J Differential Equations, 2015, 159:10 pp.
[30] LIU K, YANG L Z. On entire solutions of some differential-difference equations[J]. Computational Methods and Function Theory, 2013, 13(3):433-447. doi:10.1007/s40315-013-0030-2.
[31] LIU M L, GAO L Y. Transcendental solutions of systems of complex differential-difference equations[J]. Sci Sin Math, 2019, 49:1633-1654.
[32] LÜ F, HAN Q. On the Fermat-type equation f 3(z)+f 3(z+c)=1[J]. Aequ Math, 2017, 91:129-136.
[33] LÜ F, LI Z. Meromorphic solutions of Fermat type partial differential equations[J]. Journal of Mathematical Analysis and Applications, 2019, 478(2):864-873. doi:10.1016/j.jmaa.2019.05.058.
[34] MALMQUIST J. Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre[J]. Acta Mathematica, 1913, 36(1):297-343. doi:10.1007/bf02422385.
[35] MONTEL P. Lecons sur les familles normales de fonctions analytiques et leurs applications[M]. Paris: Gauthier-Villars, 1927: 135-136.
[36] SU X F, ZHANG Q C. Meromorphic solutions of Fermat type complex differential and difference equations[J]. Acta Math Appl Sin, 2019, 42(3):425-432.
[37] TANG J F, LIAO L W. The transcendental meromorphic solutions of a certain type of nonlinear differential equations[J]. Journal of Mathematical Analysis and Applications, 2007, 334(1):517-527. doi:10.1016/j.jmaa.2006.12.075.
[38] TODA N. On the functional equation ∑pi=0ai f ni=1[J]. Tohoku Math J, 1971, 23:289-299.
[39] WANG Q, CHEN W, HU P C. On entire solutions of two certain Fermat-type differential-difference equations[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43(4):2951-2965. doi:10.1007/s40840-019-00848-z.
[40] WANG H, XU H Y, TU J. The existence and forms of solutions for some Fermat-type differential-difference equations[J]. AIMS Mathematics, 2020, 5(1):685-700. doi:10.3934/math.2020046.
[41] WILES A. Modular elliptic curves and Fermats last theorem[J]. The Annals of Mathematics, 1995, 141(3):443-551. doi:10.2307/2118559.
[42] WU L L, HE C, LÜ W R, et al. Existence of meromorphic solutions of some generalized Fermat functional equations[J]. Aequationes Math, 2020, 94(1):59-69.
[43] XU H Y, MENG D W, LIU S Y, et al. Entire solutions for several second-order partial differential-difference equations of Fermat type with two complex variables[J]. Advances in Difference Equations, 2021, 2021(1):1-24. doi:10.1186/s13662-020-03201-y.
[44] XU L, CAO T B. Solutions of complex Fermat-type partial difference and differential-difference equations[J]. Mediterranean Journal of Mathematics, 2018, 15(6):1-14. doi:10.1007/s00009-018-1274-x.
[45] YANG C C. A generalization of a theorem of P. Montel on entire functions[J]. Proceedings of the American Mathematical Society, 1970, 26(2):332-334. doi:10.1090/s0002-9939-1970-0264080-x.
[46] YANG C C, LI P. On the transcendental solutions of a certain type of nonlinear differential equations[J]. Archiv Der Mathematik, 2004, 82(5):442-448. doi:10.1007/s00013-003-4796-8.
[47] YANG C C, YI H X. Uniqueness theory of meromorphic functions[M]. Beijing: Science Press, 2003.
[48] YANAGIHARA N. Meromorphic solutions of some difference equations[J]. Funkcial Ekvac, 1980, 23(3):309-326.
[49] YU K W, YANG C C. A note for Warings type of equations for the ring of meromorphic functions[J]. Indian Journal of Pure and Applied Mathematics, 2002, 33(10):1495-1502.
[50] ZHANG X, LIAO L W. On a certain type of nonlinear differential equations admitting transcendental meromorphic solutions[J]. Science China Mathematics, 2013, 56(10):2025-2034. doi:10.1007/s11425-013-4594-0.
[1] 欧阳柏平,李远飞. 多孔介质中的一类流体方程组的连续依赖性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 103-110.
[2] 侯春娟,李远飞,郭连红. 一类广义不可压Boussinesq方程组解的局部存在性及爆破准则[J]. 《山东大学学报(理学版)》, 2021, 56(2): 97-102.
[3] 王潇文,吕艳. 一类随机偏微分方程极大似然估计的假设检验[J]. 《山东大学学报(理学版)》, 2020, 55(6): 17-22.
[4] 王燕荣,陈云兰. 一种改进的求解大型线性方程组的Jacobi迭代法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 122-126.
[5] 李远飞. 原始方程组对黏性系数的连续依赖性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 12-23.
[6] 崔建斌,姬安召,鲁洪江,王玉风,何姜毅,许泰. Schwarz Christoffel变换数值解法[J]. 山东大学学报(理学版), 2016, 51(4): 104-111.
[7] 刘曼莉,高凌云. 一类复差分方程组的亚纯解[J]. 山东大学学报(理学版), 2016, 51(10): 34-40.
[8] 宋萌萌,尚海锋. 具测度初值的非线性抛物方程组的Cauchy问题[J]. 山东大学学报(理学版), 2016, 51(10): 41-47.
[9] 李凤萍, 陈光霞. 磁微极流体方程组弱解的正则准则[J]. 山东大学学报(理学版), 2015, 50(05): 60-67.
[10] 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74.
[11] 陈一鸣,解加全,苑润浩,郝晓光. Block Pulse函数法求解非线性Volterra-Fredholm-Hammerstein积分方程[J]. J4, 2013, 48(10): 105-110.
[12] 江静1,李宁2,王婷1. 一矩阵方程组可解条件的研究[J]. J4, 2013, 48(10): 47-50.
[13] 马洁,潘振宽*,魏伟波,国凯. 含Euler弹性项图像修复变分模型的快速Split Bregman算法[J]. J4, 2013, 48(05): 70-77.
[14] 张海燕1,2,李耀红2. 非线性混合高阶奇异微分方程组边值问题的正解[J]. J4, 2012, 47(2): 31-35.
[15] 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!