山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 66-72.doi: 10.6040/j.issn.1671-9352.0.2016.213
张莎,贾梅*,李燕,李晓晨
ZHANG Sha, JIA Mei*, LI Yan, LI Xiao-chen
摘要: 研究了一类分数阶脉冲微分方程三点边值问题解的存在性和唯一性。 利用Schauder不动点定理及压缩映射原理,获得了该边值问题解的存在性和唯一性定理。
中图分类号:
[1] 傅希林, 闫宝强, 刘衍胜. 脉冲微分系统引论[M]. 北京:科学出版社, 2005. FU Xilin, YAN Baoqiang, LIU Yansheng. The introduction of impulsive differential systems[M]. Beijing: Science Press, 2005. [2] 孙继涛, 张瑜, 赵寿为. 脉冲系统的分析与控制[M]. 北京:科学出版社, 2013. SUN Jitao, ZHANG Yu, ZHAO Shouwei. Analysis and control of pulse system[M]. Beijing: Science Press, 2013. [3] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京:中国科学技术出版社, 2012. BAI Zhanbing. Theory and applications of fractional differential equations boundary value problems[M]. Beijing: Science and Technology Press, 2012. [4] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006. [5] DIETHELM K. The analysis of fractional differential equation[M]. Berlin Heidelberg: Springer-Verlag, 2010. [6] 郭大钧, 孙经先, 刘兆理. 非线性常微分方程泛函方法[M]. 济南:山东科学技术出版社, 2006. GUO Dajun, SUN Jingxian, LIU Zhaoli. Functional methods for nonlinear ordinary differential equations[M]. Jinan: Shandong Science and Technology Press, 2006. [7] AHMAD B, SIVASUNDARAM S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations[J]. Nonlinear Analysis Hybrid Systems, 2009, 3(3):251-258. [8] 窦丽霞, 刘锡平, 金京福, 等. 分数阶积分微分方程多点边值问题解的存在性和唯一性[J]. 上海理工大学学报, 2012, 34(1):51-55. DOU Lixia, LIU Xiping, JIN Jingfu, et al. Existence and uniqueness of solutions of multi-point boundary value problems for integro-differential equations of fractional order[J]. Journal of University of Shanghai for Science and Technology, 2012, 34(1):51-55. [9] WANG Jinrong, ZHOU Yong, MICHAL Feckan. On recent developments in the theory of boundary value problems for impulsive fractional differential equations[J]. Computers and Mathematics with Applications, 2012, 64(10):3008-3020. [10] LIU Xiping, JIA Mei. Existence of solutions for the integral boundary value problems of fractional order impulsive differential equations[J]. Mathematical Methods in the Applied Sciences, 2015, 39(3):475-487. [11] ZHOU Jie, FENG Meiqiang. Greens function for sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application[J]. Boundary Value Problems, 2014, 2014(1):1-21. [12] TIAN Yuansheng, BAI Zhanbing. Existence results for the three-point impulsive boundary value problem involving fractional differential equations[J]. Computers and Mathematics with Applications, 2010, 59(8):2601-2609. [13] LI Xiaoping, CHEN Fulai, LI Xuezhu. Generalized anti-periodic boundary value problems of impulsive fractional differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(1):28-41. [14] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(4):42-49. CHEN Qiang, JIA Mei, ZHANG Haibin. Existence and uniqueness of solutions for nonlinear fractional four-point boundary value problems[J]. Journal of Shandong University(Natural Science), 2015, 50(4):42-49. [15] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(4):57-62. YANG Hao, LIU Xiping, WU Guiyun. Existence of the solutions for a type of nonlocal boundary value problems for fractional differential equations with p-Laplacian operator[J]. Journal of Shandong University(Natural Science), 2015, 50(4):57-62. [16] 刘帅, 贾梅, 秦小娜. 带积分边值条件的分数阶微分方程解的存在性和唯一性[J]. 上海理工大学学报, 2014, 36(5):409-415. LIU Shuai, JIA Mei, QIN Xiaona. Existence and uniqueness of solutions of the fractional differential equation with integral boundary conditions[J]. Journal of University of Shanghai for Science and Technology, 2014, 36(5):409-415. [17] YANG Liu, ZHANG Weiguo, LIU Xiping. A sufficient condition for the existence of a positive solution for a nonlinear fractional differential equation with the Riemann-Liouville derivative[J]. Applied Mathematics Letters, 2012, 25(25):1986-1992. |
[1] | 申柳肖,赵春. 基于尺度结构的竞争种群系统的最优输入率控制[J]. 山东大学学报(理学版), 2018, 53(7): 21-29. |
[2] | 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20. |
[3] | 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55. |
[4] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[5] | 荣文萍,崔静. 非Lipschitz条件下一类随机发展方程的μ-概几乎自守解[J]. 山东大学学报(理学版), 2017, 52(10): 64-71. |
[6] | 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73. |
[7] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[8] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[9] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
[10] | 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48. |
[11] | 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(04): 56-62. |
[12] | 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79. |
[13] | 杨雪洁,孙国正*,陈雯. 一个拟线性奇摄动问题的激波解[J]. 山东大学学报(理学版), 2014, 49(04): 79-83. |
[14] | 周文学1,2, 刘海忠1. 一类分数阶微分方程边值问题解的存在性[J]. J4, 2013, 48(8): 45-49. |
[15] | 陈一鸣,孙慧,刘乐春,付小红. Legendre多项式求解变系数的分数阶Fredholm积分微分方程[J]. J4, 2013, 48(6): 80-86. |
|