您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 104-110.doi: 10.6040/j.issn.1671-9352.0.2022.268

• • 上一篇    

自然增长条件下障碍问题弱解的正则性

赵崧,康迪,徐秀娟*   

  1. 华北理工大学理学院, 河北 唐山 063210
  • 发布日期:2023-03-27
  • 作者简介:赵崧(1998— ),女,硕士研究生,研究方向为偏微分方程及应用. E-mail:xiao_zhao_0@126.com*通信作者简介:徐秀娟(1965— ),女,硕士,教授,硕士生导师,研究方向为偏微分方程及应用. E-mail:xxjluck@126.com
  • 基金资助:
    河北省自然科学基金资助项目(A2019209533)

Regularity of weak solutions for obstacle problems with natural growth

ZHAO Song, KANG Di, XU Xiu-juan*   

  1. College of Science, North China University of Science and Technology, Tangshan 063210, Hebei, China
  • Published:2023-03-27

摘要: 研究自然增长条件下非齐次A-调和方程障碍问题弱解的正则性。首先通过证明方程障碍问题弱解的Caccippoli不等式,得到其逆Hölder不等式,其次利用Gehring引理得到其局部可积性,最后利用本质零点及相关性质得到了其零点性质。

关键词: 自然增长条件, 障碍问题, 弱解, 零点性质, 局部可积性

Abstract: The regularity of weak solutions of obstacle problem for nonhomogeneous A-harmonic equations on natural growth are studied. By proving the Caccippoli inequality of weak solution for the obstacle problem of this equation, inverse Hölder inequality is deduced and Gehring lemma is used to prove its local integrability. Finally, the properties at zero are deduced by using the essential zero properties.

Key words: natural growth, obstacle problem, weak solution, zero property, local integrability

中图分类号: 

  • O175.25
[1] XIE Suying, FANG Ainong. Global higher integrability for the gradient of very weak solutions of a class of nonlinear elliptic systems[J]. Nonlinear Analysis, 2003, 53(7/8):1127-1147.
[2] ZHENG Shenzhou, ZHENG Xueliang, FENG Zhaosheng. Optimal regularity for A-harmonic type equations under the natural growth[J]. Discrete and Continuous Dynamical Systems: Series B, 2011, 16(2):669-685.
[3] ZHENG Shenzhou, ZHENG Xueliang, FENG Zhaosheng. Regularity for a class of degenerate elliptic equations with discontinuous coefficients under natural growth[J]. Journal of Mathematical Analysis and Applications, 2008, 346(2):359-373.
[4] BECK L. Boundary regularity for elliptic systems under a natural growth condition[J]. Annali Di Matematica Pura Ed Applicata, 2011, 190(4):553-588.
[5] 张雅楠, 闫硕, 佟玉霞. 自然增长条件下的非齐次A-调和方程弱解的梯度估计[J]. 数学物理学报, 2020, 40(2):379-394. ZHANG Yanan, YAN Shuo, TONG Yuxia. Gradient estimates for weak solutions to non-homogeneous A-harmonic equations under natural growth[J]. Acta Mathematica Scientia, 2020, 40(2):379-394.
[6] LI G B, MARTIO O. Local and global integrability of gradients in obstacle problems[J]. Annales Academiae Scientiarum Fennicae Mathematica, 1994, 19(1):25-34.
[7] 周树清, 胡振华, 彭冬云. 一类A-调和方程的障碍问题的很弱解的全局正则性[J]. 数学物理学报(A辑), 2014, 34(1):27-38. ZHOU Shuqing, HU Zhenhua, PENG Dongyun. Global regularity for very weak solutions to obstacle problems corresponding to a class of A-harmonic equations[J]. Acta Mathematica Scientia(Ser. A), 2014, 34(1):27-38.
[8] GEHRING F W. The Lp-integrability of the partial derivatives of a quasiconformal mapping[J]. Acta Mathematica, 1973, 130:265-277.
[9] GIAQUINTA M. Multiple integrals in the calculus of variations and nonlinear elliptic systems(AM-105)[M]. Princeton: Princeton University Press, 2016: 119-164.
[10] ADAMS R A, FOURNIER J. Sobolev spaces[M]. Boston: Academic Press, 2003: 81-134.
[11] IWANIEC T, MARTIN G. Geometric function theory and nonlinear analysis[M]. Oxford: Clarendon Press, 2001: 354-369.
[1] 薛婷婷,徐燕,刘晓平. 分数阶变系数边值问题非平凡弱解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 45-51.
[2] 张雅楠,杨雅琦,佟玉霞. 一类A-调和方程障碍问题弱解的局部梯度估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 76-83.
[3] 杜广伟. 具有次临界增长的椭圆障碍问题解的正则性[J]. 山东大学学报(理学版), 2018, 53(6): 57-63.
[4] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[5] 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103.
[6] 李凤萍, 陈光霞. 磁微极流体方程组弱解的正则准则[J]. 山东大学学报(理学版), 2015, 50(05): 60-67.
[7] 边东芬,原保全*. 可压缩磁流体方程组整体弱解的不存在性[J]. J4, 2011, 46(4): 42-48.
[8] 李娟. 一类非齐次障碍问题的很弱解的局部可积性[J]. J4, 2010, 45(8): 66-70.
[9] 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42.
[10] 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68-71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!