《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (8): 111-117.doi: 10.6040/j.issn.1671-9352.0.2022.538
Jiaxin DING(),Yongfeng GUO*(),Lina MI
摘要:
在研究欠阻尼周期势系统时, 同时引入乘性高斯白噪声和加性Lévy噪声, 首先将二阶欠阻尼周期势系统等价改写为两个一阶随机微分方程, 然后借助Janicki-Weron算法产生Lévy噪声序列, 并通过数值算法进一步模拟出该系统的稳态概率密度函数(steady-state probability density function, SPD), 最后对欠阻尼周期势系统的相变行为进行分析。研究发现系统参数、摩擦系数、稳定性指标、偏斜参数、乘性高斯白噪声强度和加性Lévy噪声强度均可以诱导系统产生相变现象。此外, 系统参数和摩擦系数的增大有利于粒子处于稳定状态。
中图分类号:
1 | FRONZONI L , MANNELLA R . Stochastic resonance in periodic potentials[J]. Journal of Statistical Physics, 1993, 70 (1): 501- 512. |
2 |
KANG Yanmei . Coherence resonance in subdiffusive fractional Klein-Kramers periodic potential systems without a bifurcation precursor[J]. EPL, 2011, 94 (6): 60005.
doi: 10.1209/0295-5075/94/60005 |
3 | 许鹏飞, 公徐路, 李毅伟, 等. 含记忆阻尼函数的周期势系统随机共振[J]. 物理学报, 2022, 71 (8): 32- 42. |
XU Pengfei , GONG Xulu , LI Yiwei , et al. Stochastic resonance of periodic potential systems containing memory damping functions[J]. Acta Physica Sinica, 2022, 71 (8): 32- 42. | |
4 |
GUO Yongfeng , LOU Xiaojuan , DONG Qiang , et al. Dynamic behavior of periodic potential system driven by cross-correlated non-Gaussian noise and Gaussian white noise[J]. International Journal of Robust and Nonlinear Control, 2022, 32 (1): 126- 140.
doi: 10.1002/rnc.5805 |
5 |
CHAKRABORTY A . Nonadiabatic tunnelling in an ideal one-dimensional semi-infinite periodic potential system: an analytically solvable model[J]. Molecular Physics, 2011, 109 (3): 429- 434.
doi: 10.1080/00268976.2010.527303 |
6 |
QI Qianqian , ZHOU Bingchang . Stochastic resonance in an underdamped periodic potential system with symmetric trichotomous noise[J]. Indian Journal of Physics, 2020, 94 (1): 81- 86.
doi: 10.1007/s12648-019-01421-x |
7 |
LOU Xiaojuan , GUO Yongfeng , DONG Qiang , et al. First-passage behavior of periodic potential system driven by correlated noise[J]. Chinese Journal of Physics, 2020, 68, 270- 283.
doi: 10.1016/j.cjph.2020.09.022 |
8 |
GUO Yongfeng , LOU Xiaojuan , DONG Qiang , et al. Stochastic resonance in a periodic potential system driven by cross-correlated noises and periodic signal[J]. International Journal of Modern Physics B, 2019, 33 (28): 1950338.
doi: 10.1142/S0217979219503387 |
9 |
NING Lijuan , WANG Jie . Current transport for a spatially periodic potential system with color noises[J]. International Journal of Modern Physics B, 2018, 32 (31): 1850352.
doi: 10.1142/S0217979218503526 |
10 | 焦尚彬, 孙迪, 刘丁, 等. α稳定噪声下一类周期势系统的振动共振[J]. 物理学报, 2017, 66 (10): 26- 36. |
JIAO Shangbin , SUN Di , LIU Ding , et al. Vibrational resonance of a class of periodic potential systems under α-stable noise[J]. Acta Physica Sinica, 2017, 66 (10): 26- 36. | |
11 |
HU Gang . Stochastic resonance in a periodic potential system under a constant force[J]. Physics Letters A, 1993, 174 (3): 247- 249.
doi: 10.1016/0375-9601(93)90767-T |
12 | 刘开贺, 靳艳飞, 马正木. 相关乘性和加性高斯白噪声激励下周期势系统的随机共振[J]. 动力学与控制学报, 2016, 14 (1): 59- 63. |
LIU Kaihe , JIN Yanfei , MA Zhengmu . Stochastic resonance of periodic potential systems under correlated multiplicative and additive Gaussian white noise excitation[J]. Journal of Dynamics and Control, 2016, 14 (1): 59- 63. | |
13 | 马正木, 靳艳飞. 二值噪声激励下欠阻尼周期势系统的随机共振[J]. 物理学报, 2015, 64 (24): 84- 90. |
MA Zhengmu , JIN Yanfei . Stochastic resonance of underdamped periodic potential systems under binary noise excitation[J]. Acta Physica Sinica, 2015, 64 (24): 84- 90. | |
14 |
SAIKIA S . The role of damping on stochastic resonance in a periodic potential[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 416, 411- 420.
doi: 10.1016/j.physa.2014.08.060 |
15 |
REEBOHN W L , POHLONG S S , MAHATO M C . Periodically driven underdamped periodic and washboard potential systems: dynamical states and stochastic resonance[J]. Physical Review E, 2012, 85 (3): 031144.
doi: 10.1103/PhysRevE.85.031144 |
16 |
KHARKONGOR D , REEBOHN W L , MAHATO M C . Particle dynamics in a symmetrically driven underdamped inhomogeneous periodic potential system[J]. Physical Review E, 2016, 94 (2): 022148.
doi: 10.1103/PhysRevE.94.022148 |
17 | JANICKI A , WERON A . Simulation and chaotic behavior of α-stable stochastic processes[M]. New York: Marcel Dekker, 1994: 351- 352. |
18 | WERON A , WERON R . Computer simulation of Lévy α-stable variables and processes[M]. Karpacz, Poland: Springer, 1995: 379- 392. |
19 | WERON R . On the Chambers-Mallows-Stuck method for simulating skewed stable random variables[J]. Statistics & Probability Letters, 1996, 28 (2): 165- 171. |
20 | DYBIEC B , GUDOWSKA N E . Stochastic resonance: the role of α-stable noises[J]. Acta Physica Polonica B, 2006, 37 (5): 1479- 1490. |
21 |
DYBIEC B , GUDOWSKA N E , HANGGI P . Lévy-Brownian motion on finite intervals: mean first passage time analysis[J]. Physical Review E, 2006, 73 (4): 046104.
doi: 10.1103/PhysRevE.73.046104 |
22 | XU Wei , HAO Mengli , GU Xudong , et al. Stochastic resonance induced by Lévy noise in a tumor growth model with periodic treatment[J]. Modern Physics Letters B, 2014, 28 (11): 1450085. |
23 | HAO Mengli , XU Wei , GU Xudong , et al. Effects of Lévy noise and immune delay on the extinction behavior in a tumor growth model[J]. Chinese Physics B, 2014, 23 (9): 090501. |
24 | XU Yong , LI Yongge , LI Juanjuan , et al. The phase transition in a bistable duffing system driven by Lévy noise[J]. Journal of Statistical Physics, 2015, 158 (1): 120- 131. |
25 | 顾仁财, 许勇, 张慧清. 非高斯Lévy噪声驱动下的非对称双稳系统的相转移和平均首次穿越时间[J]. 物理学报, 2011, 60 (11): 110514. |
GU Rencai , XU Yong , ZHANG Huiqing . Phase transfer and mean first crossing time of asymmetric bistable systems driven by non-Gaussian Lévy noise[J]. Acta Physica Sinica, 2011, 60 (11): 110514. | |
26 | 张广丽, 吕希路, 康艳梅. α稳定噪声环境下过阻尼系统中的参数诱导随机共振现象[J]. 物理学报, 2012, 61 (4): 040501. |
ZHANG Guangli , LU Xilu , KANG Yanmei . Parameter-induced stochastic resonance phenomena in overdamped systems in α-stable noise environment[J]. Acta Physica Sinica, 2012, 61 (4): 040501. | |
27 | CHEN Can , KANG Yanmei . Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 379- 395. |
28 | 郭永峰, 王琳杰, 魏芳. Lévy噪声和高斯白噪声共同激励的FHN神经元系统的动力学特性[J]. 应用力学学报, 2019, 36 (4): 806- 811. |
GUO Yongfeng , WANG Linjie , WEI Fang . Dynamical properties of FHN neuron system jointly excited by Lévy noise and Gaussian white noise[J]. Chinese Journal of Applied Mechanics, 2019, 36 (4): 806- 811. | |
29 | LI Y G , XU Y , KURTHS J , et al. Levy-noise-induced transport in a rough triple-well potential[J]. Physical Review E, 2016, 94 (4): 042222. |
[1] | 张诗苗,吕艳. 带Lévy噪声的Lotka-Volterra竞争模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(10): 24-31. |
[2] | 黄琴梅,寇俊克. 带混合噪声回归模型小波估计器的相合性[J]. 《山东大学学报(理学版)》, 2023, 58(1): 25-30. |
[3] | 苌庆,亓庆源,刘志强. 含有乘性噪声的理性期望模型的最优控制[J]. 《山东大学学报(理学版)》, 2022, 57(11): 50-57. |
[4] | 周玉兰,薛蕊,程秀强,陈嘉. 广义计数算子的交换性质[J]. 《山东大学学报(理学版)》, 2021, 56(4): 94-101. |
[5] | 张美娇Symbol`@@, 张建刚, 南梦冉, 魏立祥. 色噪声激励下水轮机调节系统的分岔[J]. 《山东大学学报(理学版)》, 2021, 56(12): 94-99. |
[6] | 马明,边莉娜,刘华. 基于事件点联合分布的自激滤过泊松过程的低阶矩[J]. 山东大学学报(理学版), 2018, 53(4): 55-58. |
[7] | 吴晨,金英花,王世丽. 等级制度下带有白噪声的群集运动[J]. 《山东大学学报(理学版)》, 2018, 53(12): 114-119. |
[8] | 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29. |
[9] | 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71. |
[10] | 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80. |
[11] | 吕淑玲1,侍红军2,刘峰2. 主从多智能体网络快速随机一致性[J]. 山东大学学报(理学版), 2014, 49(1): 65-70. |
[12] | . 有观测时滞线性系统的白噪声最优估计[J]. J4, 2009, 44(6): 63-68. |
|