您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 94-101.doi: 10.6040/j.issn.1671-9352.0.2020.494

• • 上一篇    

广义计数算子的交换性质

周玉兰,薛蕊,程秀强,陈嘉   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2021-04-13
  • 作者简介:周玉兰(1978— ), 女, 博士, 副教授, 研究方向为随机分析. E-mail:zhouylw123@163.com
  • 基金资助:
    国家自然科学基金资助项目(11861057)

Commutative properties of generalized number operators

ZHOU Yu-lan, XUE Rui, CHENG Xiu-qiang, CHEN Jia   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-04-13

摘要: 讨论了Bernoulli泛函空间L2(M)中广义计数算子Nh与Γ-指标集量子Bernoulli噪声{əσ*σ:σ∈Γ}的Lie括号交换性、与əσ*σ)复合表达式以及与同指标σ-增生ə*σ(σ-湮灭əσ)复合əσə*σ*σəσ)的交换性。L2(M)上{əσ*σ:σ∈Γ}是一族有界线性算子满足典则反交换关系、幂零性、指标交为空时的复合可交换性以及“吸收”交换性。接下来讨论Nh与{əσ*σ:σ∈Γ}的各种交换性问题。一般地,Nh与量子σ-增生ə*σ(σ-湮灭əσ)的Lie括号恰是#h(σ)ə*σ(#h(σ)əσ);对于支撑不是全空间N的h,Nh与一类特殊σ-增生ə*σ(σ-湮灭əσ)可交换;而对于具有有限支撑的h,Nh与一类特殊ə*σσ)的复合仍保持其“增生(湮灭)”性质;Nh与{əσə*σ*σəσ:σ ∈Γ}可交换。

关键词: 广义计数算子, Γ-指标集量子Bernoulli噪声, 交换关系

Abstract: This paper considers the commutative ralations of the generalized number operator Nh and the quantum Bernoulli noise σ*σ:σ∈Γ} indexed by Γ, such as Lie bracket, the expressions of the composition of Nh and əσ*σ), the commutative relation of Nh and əσə*σ*σəσ). The family of bounded linear operators σ*σ:σ∈Γ} on L2(M) satisfies the canonical anticommutative relation, nilpotence and the composition are commutative if the intersection of the index is empty. Especially, σ*σ:σ∈Γ} satisfy “absorbing commutative relation”. In the following, the paper considers the commutative relations of Nh and {əσ*σ:σ∈Γ}. For any nonnegative function h on N, the Lie bracket of Nh and the σ-creation ə*σ-annihilation əσ)are just #h(σ)ə*σ(#h(σ)əσ). Especially, if the support of h is not N, then Nh is commutative with some special kind of ə*σσ). If the support of h is a finite subset of N, the composition of Nh and a special kind of ə*σσ) are just the creation type(annihilation type)operators. Moreover, the paper obtains that Nh is commutative with σə*σ*σəσ:σ∈Γ}.

Key words: generalized number operator Nh, quantum Bernoulli noise indexed by Γ, commutative ralation

中图分类号: 

  • O211
[1] HUDSON R, PARTHASARATHE K R. Quantum Itôs formula and stochastic evolutions[J]. Communications in Mathematical Physics, 1984, 93(3):301-323.
[2] PARTHASARATHE K R. An introduction to quantum stochastic calculus[M]. Basel: Birkhauser, 1992.
[3] WANG Caishi, LU Yanchun, CHAI Huifang. An aiternative approach to Privaults discrete-time chaotic calculus[J]. Journal of Msthematical Analysis and Applications, 2011, 373(2):643-654.
[4] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2010, 51(5):053528.
[5] WANG Caishi, CHEN Jinshu. Characterization theorems for generalized functionals of discrete-time normal martingale[J/OL]. Journal of Function Spaces, 2015[2020-08-13]. http://dx.doi.org/10.1155/2015/714745.
[6] WANG Caishi, CHEN Jinshu. A characterization of operators on functionals of discrete-time normal martingales[J]. Stochastic Analysis and Applications, 2017, 35(2):305-316.
[7] WANG Caishi, CHEN Jinshu. Convergence theorems for generalized functionals sequences of discrete-time normal martingale[J/OL]. Journal of Function space, 2015[2020-08-13]. http://dx.doi.org/10.1155/2015/360679.
[8] WANG Caishi, ZHANG Jihong. Wick analysis for Bernoulli noise functionals[J/OL]. Journal of Function Spaces, 2014[2020-08-13]. http://dx.doi.org/10.1155/2014/727341.
[9] HAN Qi, WANG Caishi, ZHOU Yulan. Convolution of functionals of discrete-time normal martingale[J]. Bulletin of the Australian Mathematical Society, 2012, 86(2):224-231.
[10] 周玉兰,李转,李晓慧.连续时间Guichardet-Fock空间中修正随机梯度算子的性质[J]. 山东大学学报(理学版),2018,53(12):62-68. ZHOU Yulan, LI Zhuan, LI Xiaohui. Properties of modified stochastic gradient operators in continuous-time Guichardet-Fock space[J]. Journal of Shandong University(Natural Science), 2018, 53(12):62-68.
[11] 周玉兰,李晓慧,程秀强,等. 连续时间Guichardet-Fock空间中的计数算子的表示[J].山东大学学报(理学版),2019,54(11):108-114. ZHOU Yulan, LI Xiaohui, CHENG Xiuqiang, et al. Representation of the number operator in continuous-time Guichardet-Fock space[J]. Journal of Shangdong University(Natural Science), 2019, 54(11):108-114.
[12] 周玉兰,程秀强,薛蕊,等.广义修正随机梯度与广义Skorohod 积分[J].吉林大学学报(理学版),2020,58(3):479-485. ZHOU Yulan, CHENG Xiuqiang, XUE Rui, et al. Generalized modified stochastic gradient and generalized skorohod integral[J]. Journal of Jilin University(Natural Science), 2020, 58(3):479-485.
[1] 周玉兰,李转,李晓慧. 连续时间Guichardet-Fock空间中修正随机梯度算子的性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 62-68.
[2] 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74.
[3] 陈昊君,郑莹,马明,边莉娜,刘华. 自激滤过泊松过程的协方差[J]. 《山东大学学报(理学版)》, 2018, 53(12): 75-79.
[4] 李小娟,高强. 次线性期望框架下乘积空间的正则性[J]. 山东大学学报(理学版), 2018, 53(4): 66-75.
[5] 马明,边莉娜,刘华. 基于事件点联合分布的自激滤过泊松过程的低阶矩[J]. 山东大学学报(理学版), 2018, 53(4): 55-58.
[6] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[7] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[8] 张亚娟,吕艳. 带有变阻尼的随机振动方程的逼近[J]. 山东大学学报(理学版), 2018, 53(4): 59-65.
[9] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[10] 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88.
[11] 荣文萍,崔静. 非Lipschitz条件下一类随机发展方程的μ-概几乎自守解[J]. 山东大学学报(理学版), 2017, 52(10): 64-71.
[12] 冯德成,张潇,周霖. 弱鞅的一类极小值不等式[J]. 山东大学学报(理学版), 2017, 52(8): 65-69.
[13] 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57.
[14] 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29.
[15] 张亚运,吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(4): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!