《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (5): 35-44.doi: 10.6040/j.issn.1671-9352.7.2023.343
郑晨颖1,陈颖悦1,2*,侯贤宇1,江连吉1,廖亮1
ZHENG Chenying1, CHEN Yingyue1,2*, HOU Xianyu1, JIANG Lianji1, LIAO Liang1
摘要: 针对初始值和噪声的敏感性会导致模糊C均值聚类效果下降这一问题,引入粒计算理论,采用邻域粒化技术,提出邻域粒模糊C均值聚类算法。样本在单特征上使用邻域粒化技术构造邻域粒子,在多特征上粒化形成邻域粒向量,定义多种粒距离公式度量粒子之间的距离。根据粒距离度量,提出粒模糊C均值聚类算法,采用多个数据集进行实验,将粒模糊C均值聚类算法与经典聚类算法进行比较,验证了所提出的邻域粒模糊C均值聚类算法的可行性和有效性。
中图分类号:
[1] ZADEH L A. Fuzzy sets and information granularity[J]. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, 1996, 8:433-448. [2] 王国胤,张清华,胡军.粒计算研究综述[J]. 智能系统学报, 2007, 2(6):8-26. WANG Guoyin, ZHANG Qinghua, HU Jun. An overview of granular computing[J]. CAAI Transactions on Intelligent Systems, 2007, 2(6):8-26. [3] LIN T Y. Granular computing on binary relations I:data mining and neighborhood systems[J]. Rough Sets in Knowledge Discovery, 1998, 1:2165-2166. [4] 苗夺谦. Rough set理论及其在机器学习中的应用研究[D]. 北京: 中国科学院自动化研究所, 1997. MIAO Duoqian. Rough set theory and its application in machine learning[D]. Beijing: Institute of Automation, Chinese Academy of Sciences, 1997. [5] 苗夺谦,王珏. 粗糙集理论中知识粗糙性与信息熵关系的讨论[J]. 模式识别与人工智能, 1998, 11(1):34-40. MIAO Duoqian, WANG Jue. Discussion on the relationship between knowledge roughness and information entropy in rough set theory[J]. Pattern Recognition and Artificial Intelligence, 1998, 11(1):34-40. [6] 苗夺谦,王珏. 粗糙集理论中概念与运算的信息表示[J]. 软件学报, 1999, 10(2):113-116. MIAO Duoqian, WANG Jue. Information representation of concepts and operations in rough set theory [J].Journal of Software, 1999, 10(2):113-116. [7] 陈祥焰,林耀进,王晨曦. 基于邻域粗糙集的高维类不平衡数据在线流特征选择[J]. 模式识别与人工智能, 2019, 32(8):726-735. CHEN Xiangyan, LIN Yaojin, WANG Chenxi. Online stream feature selection of high-dimensional unbalanced data based on neighborhood rough set[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(8):726-735. [8] 白盛兴,林耀进,王晨曦,等. 基于邻域粗糙集的大规模层次分类在线流特征选择[J]. 模式识别与人工智能, 2019, 32(9):811-820. BAI Shengxing, LIN Yaojin, WANG Chenxi, et al. Large-scale hierarchical classification online streaming feature selection based on neighborhood rough set [J]. Pattern Recognition and Artificial Intelligence, 2019, 32(9):811-820. [9] CHEN Yumin, ZHU Shunzhi, LI Wei, et al. Fuzzy granular convolutional classifiers[J].Fuzzy Sets and Systems, 2022, 426:145-162. [10] 梁吉业,冯晨娇,宋鹏. 大数据相关分析综述[J]. 计算机学报, 2016, 39(1):1-18. LIANG Jiye, FENG Chenjiao, SONG Peng. Review of big data correlation analysis[J]. Chinese Journal of Computers, 2016, 39(1):1-18. [11] 朱凡,王印琪. 基于k-means与神经网络机器学习算法的用户信息聚类及预测研究[J]. 情报科学, 2021, 39(7):83-90. ZHU Fan, WANG Yinqi. Research on user information clustering and predetection based on k-means and neural network machine learning algorithm[J]. Information Science, 2021, 39(7):83-90. [12] 常思源,白晓征,刘君. 一种基于聚类分析的二维激波模式识别算法[J]. 航空学报, 2020, 41(8):162-175. CHANG Siyuan, BAI Xiaozheng, LIU Jun. A two-dimensional shock pattern recognition algorithm based on cluster analysis[J]. Acta Aeronautica et AstronauticaSinica, 2020, 41(8):162-175. [13] 王海龙,柳林,林民,等. 基于信息检索及K均值聚类的音乐个性化推荐算法[J]. 吉林大学学报(工学版), 2021, 51(5):1845-1850. WANG Hailong, LIU Lin, LIN Ming, et al. Personalized music recommendation algorithm based on information retrieval and K-means clustering[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5):1845-1850. [14] 张皓,吴建鑫. 基于深度特征的无监督图像检索研究综述[J]. 计算机研究与发展, 2018, 55(9):1829-1842. ZHANG Hao, WU Jianxin.A review of unsupervised image retrieval based on depth features[J].Journal of Computer Research and Development, 2018, 55(9):1829-1842. [15] 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 山东大学学报(理学版), 2023, 58(1):59-66. FAN Jiachen, WANG Pingxin, YANG Xibei. Density sensitive spectral clustering based on three branch decision [J]. Journal of Shandong University(Natural Science), 2023, 58(1):59-66. [16] 陈健美,陆虎,宋余庆,等.一种隶属关系不确定的可能性模糊聚类方法[J]. 计算机研究与发展, 2008, 45(9):1486-1492. CHEN Jianmei, LU Hu, SONG Yuqin, et al. A possibility fuzzy clustering method with membership uncertainty[J].Journal of Computer Research and Development, 2008, 45(9):1486-1492. [17] 李心雨,范辉,刘惊雷.基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 山东大学学报(理学版), 2022, 57(8):21-38. LI Xinyu, FAN Hui, LIU Jinglei. Robust clustering based on adaptive graph adjustment and low rank Matrix decomposition[J]. Journal of Shandong University(Natural Science), 2022, 57(8):21-38. [18] 杨婷,朱恒东,马盈仓,等. 基于L2,1范数和流形正则项的半监督谱聚类算法[J]. 山东大学学报(理学版), 2021, 56(3):67-76. YANG Ting, ZHU Hengdong, MA Yingcang, et al. Semi supervised spectral clustering algorithm based on L2,1 norm and manifold regularization term [J]. Journal of Shandong University(Natural Science), 2021, 56(3):67-76. [19] 孙林,梁娜,徐久成.基于自适应邻域互信息与谱聚类的特征选择[J]. 山东大学学报(理学版), 2022, 57(12):13-24. SUN Lin, LIANG Na, XU Jiucheng. Feature selection based on adaptive neighborhood mutual information and spectral clustering [J]. Journal of Shandong University(Natural Science), 2022, 57(12):13-24. [20] 傅兴宇,陈颖悦,陈玉明,等.一种全连接粒神经网络分类方法[J]. 山西大学学报(自然科学版), 2023, 46(1):91-100. FU Xingyu, CHEN Yingyue, CHEN Yuming, et al. A classification method of fully connected granular neural network[J].Journal of Shanxi University(Natural Science Edition), 2023, 46(1):91-100. [21] 石文峰,商琳. 一种基于决策粗糙集的模糊C均值聚类数的确定方法[J]. 计算机科学, 2017, 44(9):45-48. SHI Wenfeng, SHANG Lin. A method to determine fuzzy C-means clustering number based on decision rough set[J]. Computer Science, 2017, 44(9):45-48. [22] 王志豪.基于FCM的模糊聚类算法研究[D]. 厦门:厦门大学, 2019. WANG Zhihao. Research on fuzzy clustering algorithm based on FCM[D]. Xiamen: Xiamen University, 2019. [23] BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy C-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3):191-203. [24] 陈玉明,蔡国强,卢俊文,等.一种邻域粒K均值聚类方法[J]. 控制与决策, 2023, 38(3):857-864. CHEN Yuming, CAI Guoqiang, LU Junwen, et al. A neighborhood K-means clustering method [J]. Control and Decision, 2023, 38(3):857-864. |
[1] | 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89, 99. |
[2] | 陈玉明,郑光宇,焦娜. 基于粒神经网络的多标签学习[J]. 《山东大学学报(理学版)》, 2024, 59(5): 1-11. |
[3] | 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82. |
[4] | 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12. |
[5] | 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115. |
[6] | 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40. |
[7] | 钱婷,赵思雨,贺晓丽. 基于属性粒度研究决策形式背景的规则提取理论[J]. 《山东大学学报(理学版)》, 2019, 54(10): 113-120. |
[8] | 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12. |
[9] | 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104. |
[10] | 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107-110. |
[11] | 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106. |
[12] | 张清华1,2,幸禹可2,王国胤2. 概念知识粒与概念信息粒的相互转化[J]. J4, 2010, 45(9): 1-6. |
[13] | 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60-64. |
|