您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (5): 35-44.doi: 10.6040/j.issn.1671-9352.7.2023.343

• • 上一篇    下一篇

一种邻域粒的模糊C均值聚类算法

郑晨颖1,陈颖悦1,2*,侯贤宇1,江连吉1,廖亮1   

  1. 1.厦门理工学院计算机与信息工程学院, 福建 厦门 361024;2.厦门理工学院经济与管理学院, 福建 厦门 361024
  • 发布日期:2024-05-09
  • 通讯作者: 陈颖悦(1981— ),男,正高级实验师,硕士,研究方向为机器学习. E-mail:cyyyjslw@163.com
  • 基金资助:
    国家自然科学基金资助项目(61976183);厦门市科技计划资助项目(2022CXY0428)

A neighbourhood granular fuzzy C-means clustering algorithm

ZHENG Chenying1, CHEN Yingyue1,2*, HOU Xianyu1, JIANG Lianji1, LIAO Liang1   

  1. 1. School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China;
    2. School of Economy and Management, Xiamen University of Technology, Xiamen 361024, Fujian, China
  • Published:2024-05-09

摘要: 针对初始值和噪声的敏感性会导致模糊C均值聚类效果下降这一问题,引入粒计算理论,采用邻域粒化技术,提出邻域粒模糊C均值聚类算法。样本在单特征上使用邻域粒化技术构造邻域粒子,在多特征上粒化形成邻域粒向量,定义多种粒距离公式度量粒子之间的距离。根据粒距离度量,提出粒模糊C均值聚类算法,采用多个数据集进行实验,将粒模糊C均值聚类算法与经典聚类算法进行比较,验证了所提出的邻域粒模糊C均值聚类算法的可行性和有效性。

关键词: 粒计算, 邻域粒, 模糊C均值聚类, 无监督模糊聚类方法, 粒向量

Abstract: Aiming at the problem that the sensitivity of initial value and noise lead to the decline of fuzzy C-means clustering, fuzzy C-means clustering method of neighborhood granule is proposed by introducing the theory of granular computation and using the neighborhood granulation technique. In the sample, the neighborhood granule is constructed by using the neighborhood granulation technique on single feature, and the neighborhood granular vector is formed by using granulation on multi-features.A variety of granule distance formulas are defined to measure the distance between granules. According to the granule distance measurement, a granular fuzzy C-means clustering method is proposed, and a granular fuzzy C-means clustering algorithm is designed. Multiple data sets are used to perform experiments, and the fuzzy C-means clustering algorithm is compared with the classical clustering algorithm. The results verify the feasibility and effectiveness of the proposed neighborhood granular fuzzy C-means clustering method.

Key words: granular computing, neighbourhood granules, fuzzy C-means clustering, unsupervised fuzzy clustering method, granule vectors

中图分类号: 

  • TP181
[1] ZADEH L A. Fuzzy sets and information granularity[J]. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, 1996, 8:433-448.
[2] 王国胤,张清华,胡军.粒计算研究综述[J]. 智能系统学报, 2007, 2(6):8-26. WANG Guoyin, ZHANG Qinghua, HU Jun. An overview of granular computing[J]. CAAI Transactions on Intelligent Systems, 2007, 2(6):8-26.
[3] LIN T Y. Granular computing on binary relations I:data mining and neighborhood systems[J]. Rough Sets in Knowledge Discovery, 1998, 1:2165-2166.
[4] 苗夺谦. Rough set理论及其在机器学习中的应用研究[D]. 北京: 中国科学院自动化研究所, 1997. MIAO Duoqian. Rough set theory and its application in machine learning[D]. Beijing: Institute of Automation, Chinese Academy of Sciences, 1997.
[5] 苗夺谦,王珏. 粗糙集理论中知识粗糙性与信息熵关系的讨论[J]. 模式识别与人工智能, 1998, 11(1):34-40. MIAO Duoqian, WANG Jue. Discussion on the relationship between knowledge roughness and information entropy in rough set theory[J]. Pattern Recognition and Artificial Intelligence, 1998, 11(1):34-40.
[6] 苗夺谦,王珏. 粗糙集理论中概念与运算的信息表示[J]. 软件学报, 1999, 10(2):113-116. MIAO Duoqian, WANG Jue. Information representation of concepts and operations in rough set theory [J].Journal of Software, 1999, 10(2):113-116.
[7] 陈祥焰,林耀进,王晨曦. 基于邻域粗糙集的高维类不平衡数据在线流特征选择[J]. 模式识别与人工智能, 2019, 32(8):726-735. CHEN Xiangyan, LIN Yaojin, WANG Chenxi. Online stream feature selection of high-dimensional unbalanced data based on neighborhood rough set[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(8):726-735.
[8] 白盛兴,林耀进,王晨曦,等. 基于邻域粗糙集的大规模层次分类在线流特征选择[J]. 模式识别与人工智能, 2019, 32(9):811-820. BAI Shengxing, LIN Yaojin, WANG Chenxi, et al. Large-scale hierarchical classification online streaming feature selection based on neighborhood rough set [J]. Pattern Recognition and Artificial Intelligence, 2019, 32(9):811-820.
[9] CHEN Yumin, ZHU Shunzhi, LI Wei, et al. Fuzzy granular convolutional classifiers[J].Fuzzy Sets and Systems, 2022, 426:145-162.
[10] 梁吉业,冯晨娇,宋鹏. 大数据相关分析综述[J]. 计算机学报, 2016, 39(1):1-18. LIANG Jiye, FENG Chenjiao, SONG Peng. Review of big data correlation analysis[J]. Chinese Journal of Computers, 2016, 39(1):1-18.
[11] 朱凡,王印琪. 基于k-means与神经网络机器学习算法的用户信息聚类及预测研究[J]. 情报科学, 2021, 39(7):83-90. ZHU Fan, WANG Yinqi. Research on user information clustering and predetection based on k-means and neural network machine learning algorithm[J]. Information Science, 2021, 39(7):83-90.
[12] 常思源,白晓征,刘君. 一种基于聚类分析的二维激波模式识别算法[J]. 航空学报, 2020, 41(8):162-175. CHANG Siyuan, BAI Xiaozheng, LIU Jun. A two-dimensional shock pattern recognition algorithm based on cluster analysis[J]. Acta Aeronautica et AstronauticaSinica, 2020, 41(8):162-175.
[13] 王海龙,柳林,林民,等. 基于信息检索及K均值聚类的音乐个性化推荐算法[J]. 吉林大学学报(工学版), 2021, 51(5):1845-1850. WANG Hailong, LIU Lin, LIN Ming, et al. Personalized music recommendation algorithm based on information retrieval and K-means clustering[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5):1845-1850.
[14] 张皓,吴建鑫. 基于深度特征的无监督图像检索研究综述[J]. 计算机研究与发展, 2018, 55(9):1829-1842. ZHANG Hao, WU Jianxin.A review of unsupervised image retrieval based on depth features[J].Journal of Computer Research and Development, 2018, 55(9):1829-1842.
[15] 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 山东大学学报(理学版), 2023, 58(1):59-66. FAN Jiachen, WANG Pingxin, YANG Xibei. Density sensitive spectral clustering based on three branch decision [J]. Journal of Shandong University(Natural Science), 2023, 58(1):59-66.
[16] 陈健美,陆虎,宋余庆,等.一种隶属关系不确定的可能性模糊聚类方法[J]. 计算机研究与发展, 2008, 45(9):1486-1492. CHEN Jianmei, LU Hu, SONG Yuqin, et al. A possibility fuzzy clustering method with membership uncertainty[J].Journal of Computer Research and Development, 2008, 45(9):1486-1492.
[17] 李心雨,范辉,刘惊雷.基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 山东大学学报(理学版), 2022, 57(8):21-38. LI Xinyu, FAN Hui, LIU Jinglei. Robust clustering based on adaptive graph adjustment and low rank Matrix decomposition[J]. Journal of Shandong University(Natural Science), 2022, 57(8):21-38.
[18] 杨婷,朱恒东,马盈仓,等. 基于L2,1范数和流形正则项的半监督谱聚类算法[J]. 山东大学学报(理学版), 2021, 56(3):67-76. YANG Ting, ZHU Hengdong, MA Yingcang, et al. Semi supervised spectral clustering algorithm based on L2,1 norm and manifold regularization term [J]. Journal of Shandong University(Natural Science), 2021, 56(3):67-76.
[19] 孙林,梁娜,徐久成.基于自适应邻域互信息与谱聚类的特征选择[J]. 山东大学学报(理学版), 2022, 57(12):13-24. SUN Lin, LIANG Na, XU Jiucheng. Feature selection based on adaptive neighborhood mutual information and spectral clustering [J]. Journal of Shandong University(Natural Science), 2022, 57(12):13-24.
[20] 傅兴宇,陈颖悦,陈玉明,等.一种全连接粒神经网络分类方法[J]. 山西大学学报(自然科学版), 2023, 46(1):91-100. FU Xingyu, CHEN Yingyue, CHEN Yuming, et al. A classification method of fully connected granular neural network[J].Journal of Shanxi University(Natural Science Edition), 2023, 46(1):91-100.
[21] 石文峰,商琳. 一种基于决策粗糙集的模糊C均值聚类数的确定方法[J]. 计算机科学, 2017, 44(9):45-48. SHI Wenfeng, SHANG Lin. A method to determine fuzzy C-means clustering number based on decision rough set[J]. Computer Science, 2017, 44(9):45-48.
[22] 王志豪.基于FCM的模糊聚类算法研究[D]. 厦门:厦门大学, 2019. WANG Zhihao. Research on fuzzy clustering algorithm based on FCM[D]. Xiamen: Xiamen University, 2019.
[23] BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy C-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3):191-203.
[24] 陈玉明,蔡国强,卢俊文,等.一种邻域粒K均值聚类方法[J]. 控制与决策, 2023, 38(3):857-864. CHEN Yuming, CAI Guoqiang, LU Junwen, et al. A neighborhood K-means clustering method [J]. Control and Decision, 2023, 38(3):857-864.
[1] 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89, 99.
[2] 陈玉明,郑光宇,焦娜. 基于粒神经网络的多标签学习[J]. 《山东大学学报(理学版)》, 2024, 59(5): 1-11.
[3] 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82.
[4] 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12.
[5] 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115.
[6] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[7] 钱婷,赵思雨,贺晓丽. 基于属性粒度研究决策形式背景的规则提取理论[J]. 《山东大学学报(理学版)》, 2019, 54(10): 113-120.
[8] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12.
[9] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[10] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107-110.
[11] 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106.
[12] 张清华1,2,幸禹可2,王国胤2. 概念知识粒与概念信息粒的相互转化[J]. J4, 2010, 45(9): 1-6.
[13] 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[2] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38 -40 .
[3] 马继雄,江莉,祁驭矜,向凤宁,夏光敏 . 祁连龙胆愈伤组织和再生植株的生长及其两种药效成分分析[J]. J4, 2006, 41(6): 157 -160 .
[4] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[5] 张爱平,李刚 . LR拟正规Ehresmann半群[J]. J4, 2006, 41(5): 44 -47 .
[6] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[7] 马建玲 . 菱体型消色差相位延迟器的光谱特性分析[J]. J4, 2007, 42(7): 27 -29 .
[8] 李艳红. 模糊值函数序列的广义Egoroff定理[J]. J4, 2009, 44(4): 88 -91 .
[9] 岳强 畅大为. 亏秩线性方程组的PSD迭代解法[J]. J4, 2009, 44(10): 30 -35 .
[10] 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15 -21 .