《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (7): 64-75.doi: 10.6040/j.issn.1671-9352.1.2023.102
Ning XIAN1,2(),Yixing FAN1,2,Tao LIAN3,Jiafeng GUO1,2,*()
摘要:
针对网络对齐任务中网络结构差异大和锚节点对噪声大的问题,提出一种基于多轮迭代的网络对齐方法。该方法在每轮迭代时使用多种启发式方法计算不同维度的节点特征,利用多重特征的组合来评估锚节点的可靠性,过滤其中潜在的噪声,增强每轮对齐过程的置信度; 使用图神经网络增强无属性节点之间的一致性,减轻网络结构差异带来的影响。实验结果表明, 该方法可以在高噪声的情况下具有高准确率,验证了其有效性。
中图分类号:
1 |
SHU Kai , WANG Suhang , TANG Jiliang , et al. User identity linkage across online social networks: a review[J]. ACM SIGKDD Explorations Newsletter, 2017, 18 (2): 5- 17.
doi: 10.1145/3068777.3068781 |
2 | ZHONG Erheng, FAN Wei, WANG Junwei, et al. ComSoc: adaptive transfer of user behaviors over composite social network[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing: ACM, 2012: 696-704. |
3 | PEI Shihao, YU Lu, YU Guoxian, et al. Graph alignment with noisy supervision[C]//Proceedings of the ACM Web Conference 2022. Lyon: ACM, 2022: 1104-1114. |
4 | GUZZI PH , MILENKOVIĆ T . Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin[J]. Briefings in Bioinformatics, 2018, 19, 472- 481. |
5 | CHEN Chen, TONG Hanghang, XIE Lei, et al. FASCINATE: Fast cross-layer dependency inference on multi-layered networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 765-774. |
6 | MAO Xin, WANG Wenting, WU Yuanbin, et al. From alignment to assignment: frustratingly simple unsupervised entity alignment[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana: Association for Computational Linguistics, 2021: 2843-2853. |
7 | TRUNG H T, VAN VINH T, TAM N T, et al. Adaptive network alignment with unsupervised and multi-order convolutional networks[C]//2020 IEEE 36th International Conference on Data Engineering (ICDE). Dallas: IEEE, 2020: 85-96. |
8 | PEI Shichao, YU Lu, YU Guoxian, et al. REA: robust cross-lingual entity alignment between knowledge graphs[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 2175-2184. |
9 | EMMERT-STREIB F , DEHMER M , SHI Y . Fifty years of graph matching, network alignment and network comparison[J]. Information Sciences, 2016, 346 (C): 180- 197. |
10 | BURKARD R E , PITSOULIS L S . The quadratic assignment problem[J]. Parallel Optimization Colloquium, 2012, 25 (4): 143- 174. |
11 | MILENKOVIĆ T , NG W L , HAYES W , et al. Optimal network alignment with graphlet degree vectors[J]. Cancer Informatics, 2010, 9, 121- 137. |
12 | BAYATI M , GLEICH D F , SABERI A , et al. Message-passing algorithms for sparse network alignment[J]. ACM Transactions on Knowledge Discovery from Data, 2013, 7 (1): 1- 31. |
13 | KOUTRA D, TONG H, LUBENSKY D. BIG-ALIGN: fast bipartite graph alignment[C]//2013 IEEE 13th International Conference on Data Mining. Dallas: IEEE, 2013: 389-398. |
14 | SAAD-ELDIN A, PEDIGO B D, PRIEBE C E, et al. Graph matching via optimal transport[EB/OL]. (2021-11-09)[2023-09-01]. https://arxiv.org/abs/2111.05366. |
15 | SINGH R , XU J , BERGER B . Global alignment of multiple protein interaction networks with application to functional orthology detection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (35): 12763- 12768. |
16 | HEIMANN M, SHEN H, SAFAVI T, et al. REGAL: representation learning-based graph alignment[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 117-126. |
17 | ZHANG Si, TONG Hanghang. FINAL: fast attributed network alignment[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 1345-1354. |
18 | MAN Tong, SHEN Huawei, LIU Shenghua, et al. Predict anchor links across social networks via an embedding approach[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 1823-1829. |
19 |
NGUYEN T T , PHAM M T , NGUYEN T T , et al. Structural representation learning for network alignment with self-supervised anchor links[J]. Expert Systems with Applications, 2021, 165, 113857.
doi: 10.1016/j.eswa.2020.113857 |
20 | XIN Keyuan, SUN Zequn, HUA Wen, et al. Large-scale entity alignment via knowledge graph merging, partitioning and embedding[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta: ACM, 2022: 2240-2249. |
21 | WANG Zichuan, LYU Qingsong, LAN Xiaohan, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018: 349-357. |
22 | LI Chengjiang, CAO Yixin, HOU Lei, et al. Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong: Association for Computational Linguistics, 2019: 2723-2732. |
23 | PEI Shichao, YU Lu, YU Guoxian, et al. Graph alignment with noisy supervision[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 1104-1114. |
24 | KOUTRA D , SHAH N , VOGELSTEIN J T , et al. Delta Con: principled massive-graph similarity function with attribution[J]. ACM Transactions on Knowledge Discovery from Data, 2016, 10 (3): 1- 43. |
25 |
PRZULJ N . Biological network comparison using graphlet degree distribution[J]. Bioinformatics, 2007, 23 (2): e177- e183.
doi: 10.1093/bioinformatics/btl301 |
26 | TONG H, FALOUTSOS C, PAN J Y. Fast random walk with restart and its applications[C]//Sixth International Conference on Data Mining (ICDM'06). Hong Kong: IEEE, 2006: 613-622. |
27 | XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. (2018-10-01)[2023-08-06]. https://arxiv.org/abs/1810.00826. |
28 | XU Keyulu, LI Chengtao, TIAN Yongle, et al. Representation learning on graphs with jumping knowledge networks[C]// Proceedings of the 35th International Conference on Machine Learning: Volume 80. Stockholmsmässan: PMLR, 2018 : 5453-5462. |
29 | PARK J D , TRAN C , SHIN W Y , et al. On the power of gradual network alignment using dual-perception similarities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (12): 15292- 15307. |
30 | YAN Yucheng, ZHANG Si, TONG Hanghang. BRIGHT: a bridging algorithm for network alignment[C]//Proceedings of the Web Conference 2021. Ljubljana: ACM, 2021: 3907-3917. |
31 | GUIMERÀ R , DANON L , DÍAZ-GUILERA A , et al. Self-similar community structure in a network of human interactions[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2003, 68, 065103. |
32 | CAO Xuezhi, YU Yong. BASS: a bootstrapping approach for aligning heterogenous social networks[M]//FRASCONI P, LANDWEHR N, MANCO G, et al. Machine Learning and Knowledge Discovery in Databases: Volume 9851. Cham: Springer, 2016: 459-475. |
33 | DU Xingbo, YAN Junchi, ZHA Hongyuan. Joint link prediction and network alignment via cross-graph embedding[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 2251-2257. |
34 | FEY M, LENSSEN J E. Fast graph representation learning with pytorch geometric[EB/OL]. (2019-05-06)[2023-09-01]. https://arxiv.org/abs/1903.02428v3. |
[1] | 孙承杰,李宗蔚,单丽莉,林磊. 一种基于核心论元的篇章级事件抽取方法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 53-63. |
[2] | 刘沛羽,姚博文,高泽峰,赵鑫. 基于矩阵乘积算符表示的序列化推荐模型[J]. 《山东大学学报(理学版)》, 2024, 59(7): 44-52, 104. |
[3] | 邵伟,朱高宇,于雷,郭嘉丰. 高维数据的降维与检索算法[J]. 《山东大学学报(理学版)》, 2024, 59(7): 27-43. |
[4] | 杨纪元,马沐阳,任鹏杰,陈竹敏,任昭春,辛鑫,蔡飞,马军. 基于自监督的预训练在推荐系统中的研究[J]. 《山东大学学报(理学版)》, 2024, 59(7): 1-26. |
[5] | 陈海粟,廖佳纯,姚思诚. 政府开放数据中个人信息披露识别与统计方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 95-106. |
[6] | 温欣,李德玉. 基于属性加权的ML-KNN方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 107-117. |
[7] | 曾雪强,孙雨,刘烨,万中英,左家莉,王明文. 基于情感分布的emoji嵌入式表示[J]. 《山东大学学报(理学版)》, 2024, 59(3): 81-94. |
[8] | 牛泽群,李晓戈,强成宇,韩伟,姚怡,刘洋. 基于图注意力神经网络的实体消歧方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 71-80, 94. |
[9] | 史春雨,毛煜,刘浩阳,林耀进. 基于样本相关性的层次特征选择算法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 61-70. |
[10] | 卢婵,郭军军,谭凯文,相艳,余正涛. 基于文本指导的层级自适应融合的多模态情感分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 31-40, 51. |
[11] | 王新生,朱小飞,李程鸿. 标签指导的多尺度图神经网络蛋白质作用关系预测方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 22-30. |
[12] | 张乃洲,曹薇. 一种基于文本语义扩展的记忆网络查询建议模型[J]. 《山东大学学报(理学版)》, 2023, 58(12): 10-21. |
[13] | 陈淑珍,史开泉,李守伟. 微信息的嵌入生成及其智能隐藏-还原[J]. 《山东大学学报(理学版)》, 2023, 58(12): 1-9. |
[14] | 仲诚诚,周恒,张梓童,张春雷. LAC-UNet: 基于胶囊表达局部-整体特征关系的语义分割模型[J]. 《山东大学学报(理学版)》, 2023, 58(11): 116-126. |
[15] | 吴贤君,唐绍诗,王明秋. 融合基础属性和通信行为的移动用户个性化推荐[J]. 《山东大学学报(理学版)》, 2023, 58(9): 81-93. |
|