您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 21-25.doi: 10.6040/j.issn.1671-9352.0.2016.329

• • 上一篇    下一篇

WOD样本下密度函数核估计的收敛性

胡学平,张红梅   

  1. 安庆师范大学数学与计算科学学院, 安徽 安庆 246133
  • 收稿日期:2016-07-01 出版日期:2017-04-20 发布日期:2017-04-11
  • 作者简介:胡学平(1972— ), 男, 硕士, 教授, 研究方向为概率极限理论及其应用. E-mail: hxprob@163.com
  • 基金资助:
    国家自然科学基金数学天元专项基金资助项目(11626031);安徽省高校自然科学基金重点项目(KJ2013A179)

Convergence properties of the kernel-type density estimator under WOD dependent samples

HU Xue-ping, ZHANG Hong-mei   

  1. School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, Anhui, China
  • Received:2016-07-01 Online:2017-04-20 Published:2017-04-11

摘要: 设{Xn,n≥1}为同分布的WOD随机序列, f(x)为共同的概率密度函数。利用WOD序列的Rosenthal-型矩不等式和Bernstein-型指数不等式, 对密度函数f(x)的核估计进行了探讨, 在适当条件下得到了核估计的r 阶相合性、逐点强相合性和依概率一致收敛性。

关键词: WOD样本, 密度函数核估计, 逐点强相合性, r 阶相合性

Abstract: Let {Xn,n≥1} be an identically distributed WOD random sequence with a commen density functiong f(x). Based on the Rosenthal-type inequality and Bernstein-type inequality for WOD sequence, the kernel estimator for density function f(x)was investigated under suitable conditions, and the consistency in r order mean, the pointwise strong consistency and uniform consistency in L1 were obtained.

Key words: WOD samples, consistency in r order mean, kernel estimator, pointwise strong consistency

中图分类号: 

  • O212
[1] ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837.
[2] PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33: 1065-1076.
[3] 陈希孺, 方兆本, 李国英,等. 非参数统计[M]. 上海:上海科技出版社, 1989. CHEN Xiru, FANG Zhaoben, LI Guoying, et al. Nonparametric statistics[M]. Shang Hai: Shang Hai Science and Technology Press, 1989.
[4] 韦来生. NA样本概率密度函数核估计的相合性[J]. 系统科学与数学, 2001, 21(1): 79-87. WEI Laisheng. The consistencies for the kernel-type density estimation in the case of NA samples[J]. Journal of System Science and Mathematical Science, 2001, 21(1): 79-87.
[5] 刘永辉,吴群英.ND样本最近邻密度估计的相合性[J].吉林大学学报(理学版), 2012,50(6):1141-1145. LIU Yonghui, WU Qunying. Consistency of nearest neighbor estimator of density function for ND samples[J]. Journal of Jilin University(Science Edition), 2012, 50(6): 1141-1145.
[6] WANG Kaiyong, WANG Yuebao, GAO Qingwu. Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate[J]. Methodology and Computing in Applied Probability, 2013, 15(1): 109-124.
[7] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983, 11: 286-295.
[8] LIU Li. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9):1290-1298.
[9] 李永明, 应锐, 蔡际盼,等. WOD 样本密度函数和失效率函数递归核估计的逐点强相合性[J]. 吉林大学学报(理学版), 2015, 53(6): 1134-1138. LI Yongming, YING Rui, CAI Jipan, et al. Pointwise strong consistency of recursive kernel estimator for probability density and failure rate funciton under WOD sequence[J]. Journal of Jilin University(Science Edition), 2015, 53(6): 1134-1138.
[10] WANG Xuejun, XU Chen, HU Tienchung, et al. On complete convergence for widely orthant dependent random variables and its applications in nonparametric regression models[J]. TEST, 2014, 23(3): 607-629.
[11] SHEN Anting. Bernstein-type inequality for widely dependent sequence and its application to non-parametric regression models[J]. Abstract and Applied Analysis, 2013(1): 309-338.
[12] CHUNG K L. A course in probability theory[M]. New York: Academic Press, 1974.
[1] 李永明,邓绍坚,蒋伟红. END样本下递归密度函数估计的相合性[J]. 山东大学学报(理学版), 2017, 52(11): 54-59.
[2] 梁小林,郭敏,李静. 更新几何过程的参数估计[J]. 山东大学学报(理学版), 2017, 52(8): 53-57.
[3] 许忠好,李天奇. 基于复杂网络的中国股票市场统计特征分析[J]. 山东大学学报(理学版), 2017, 52(5): 41-48.
[4] 任鹏程,徐静,李新民. 风险价值VaR的区间估计[J]. 山东大学学报(理学版), 2017, 52(2): 85-90.
[5] 张明峰, 柳泽慧, 周小双. 响应变量缺失时纵向数据下变系数部分线性测量误差模型的经验似然推断[J]. 山东大学学报(理学版), 2015, 50(11): 127-134.
[6] 高婷婷, 范国良. 多元线性模型中回归系数矩阵的Minimax估计[J]. 山东大学学报(理学版), 2015, 50(06): 33-38.
[7] 武大勇, 李锋. 随机缺失下半参数回归模型的最大经验似然估计[J]. 山东大学学报(理学版), 2015, 50(04): 20-23.
[8] 李述山. 基于尾部样本数据的尾部相关性分析[J]. 山东大学学报(理学版), 2014, 49(12): 49-54.
[9] 甘信军, 杨维强. 证据权重方法与信用风险控制[J]. 山东大学学报(理学版), 2014, 49(12): 55-59.
[10] 王萍莉, 石东洋. Schrödinger方程双线性元的 超收敛分析和外推[J]. 山东大学学报(理学版), 2014, 49(10): 66-71.
[11] 赵培信, 周小双. 线性误差协变量下部分线性模型的约束统计推断[J]. 山东大学学报(理学版), 2014, 49(07): 69-74.
[12] 伍欣叶,吴群英. 混合删失模型中密度函数K-M估计的r-阶相合速度[J]. 山东大学学报(理学版), 2014, 49(1): 105-110.
[13] 张良勇1,2,徐兴忠2,董晓芳1. 基于中位数排序集抽样的区间估计[J]. J4, 2013, 48(12): 107-110.
[14] . 具有AR(2)误差非线性回归模型的联合检验[J]. J4, 2009, 44(7): 38-43.
[15] . 匹配法估计工作培训项目的平均处理效果[J]. J4, 2009, 44(7): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!