山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 45-52.doi: 10.6040/j.issn.1671-9352.0.2014.229
张后俊, 储茂权
ZHANG Hou-jun, CHU Mao-quan
摘要: 探究了交换半环上半线性空间的维数。给出了交换半环L上半线性空间Vn维数为n的充要条件且得到了Vn与V1之间的关系。此外介绍了半线性空间中半线性变换A及其值域A(V)与核A-1(0)的概念, 并证明了等式 dim(A(Vn))+dim(A-1(0))=dim(Vn)。
中图分类号:
[1] CUNINGHAME-GREEN R A. Minimax algebra[M]// Lecture Notes in Economics and Mathematical Systems. Berlin: Springer, 1979. [2] BUTKOVIC P. Max-algebra: the linear algebra of combinatorics[J]. Linear Algebra Appl, 2003, 367:313-335. [3] CAO Z Q, KIM K H, ROUSH F W. Incline algebra and applications[M]. New York: John Wiley, 1984. [4] CECHLAROVA K, PLAVKA J. Linear independence in bottleneck algebras[J]. Fuzzy Sets and Systems, 1996, 77:337-348. [5] KIM K H, ROUSH F W. Generalized fuzzy matrices[J]. Fuzzy Sets and Systems, 1980, 4:293-315. [6] DI-NOLAR A, LETTIERI A, PERFILIEVA I. Algebraic analysis of fuzzy systems[J]. Fuzzy Sets and Systems, 2007, 158:1-22. [7] ZHAO Shan, WANG Xueping. Invertible matrices and semilinear spaces over commutative semirings[J]. Information Sciences, 2010, 180:5115-5124. [8] ZHAO Shan, WANG Xueping. Bases in semilinear spaces over join-semirings[J]. Fuzzy Sets and Systems, 2011, 182:93-100. [9] SHU Qianyu, WANG Xueping. Bases in semilinear spaces over zerosumfree semirings[J]. Linear Algebra Appl, 2011, 435:2681-2692. [10] SHU Qianyu, WANG Xueping. Standard orthogonal vectors in semilinear spaces and their applications[J]. Linear Algebra Appl, 2012, 437:2733-2754. [11] SHU Qianyu, WANG Xueping. Dimensions of L-semilinear spaces over zerosumfree semirings[C]// IFSA World Congress and NAFIPS Annual Meeting. Edmonton, Canada: IEEE, 2013: 35-40. [12] GOLAR J S. Semirings and their applications[M]. Dordrecht: Kluwer Academic Publishers, 1999. [13] REUTENAUER C, STRAUBING H. Inversion of matrices over a commutative semiring[J]. J Algebra, 1984, 88:350-360. [14] TAN Yijia. Bases in semimodules over commutative semirings[J]. Linear Algebra Appl, 2014, 443:139-152. [15] KANAN A M, PETROVIC Z Z. Note on cardinality of bases in semilinear spaces over zerosumfree semirings[J]. Linear Algebra Appl, 2013, 439:2795-2799. |
[1] | 周晓莹,梁玉,董智,李红丽,张梦璇,韩秀峰,范小莉,房用. 印度梨形孢对黑松幼苗生长量及其根系形态的动态影响[J]. 山东大学学报(理学版), 2018, 53(7): 7-14. |
[2] | 卢博, 禄鹏. 复形的 FR-内射维数与 FR-平坦维数[J]. 山东大学学报(理学版), 2018, 53(6): 1-6. |
[3] | 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17-21. |
[4] | 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31. |
[5] | 杨春花. 关于复形的Gc-内射维数的一个注记[J]. 山东大学学报(理学版), 2017, 52(11): 82-86. |
[6] | 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23. |
[7] | 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17. |
[8] | 徐爱民. 关于相对同调维数[J]. 山东大学学报(理学版), 2016, 51(8): 44-48. |
[9] | 俞晓岚. Cocycle形变的整体维数[J]. 山东大学学报(理学版), 2016, 51(8): 39-43. |
[10] | 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91. |
[11] | 彭涛涛,刘卫斌. 元胞自动机中的Besicovitch-Eggleston型集合[J]. 山东大学学报(理学版), 2016, 51(4): 53-58. |
[12] | 付雪荣,姚海楼. 三角矩阵余代数上的倾斜余模[J]. 山东大学学报(理学版), 2016, 51(4): 25-29. |
[13] | 程海霞,殷晓斌. Abelian范畴中Gorenstein内射对象[J]. 山东大学学报(理学版), 2016, 51(2): 79-84. |
[14] | 朱荣民, 王占平. n阶三角矩阵环上的 Gorenstein 投射模与维数[J]. 山东大学学报(理学版), 2015, 50(12): 85-92. |
[15] | 郭莹, 姚海楼. 多项式环的表现维数[J]. 山东大学学报(理学版), 2015, 50(04): 71-75. |
|