《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (1): 56-68.doi: 10.6040/j.issn.1671-9352.0.2021.054
• • 上一篇
张钰倩,张太雷*
ZHANG Yu-qian, ZHANG Tai-lei*
摘要: 建立了一类具有复发效应和无症状感染的SEAIR模型,给出了模型的基本再生数R0,证明了当R0<1时无病平衡点全局渐近稳定,R0>1时无病平衡点不稳定且疾病是一致持久的。作为模型的应用,选取湖北已报道的新冠肺炎累计病例数,利用模型拟合数据,并对疾病发展趋势进行了数值模拟。最后对参数进行敏感性分析,研究了不同的复发率对新冠肺炎的影响。结果表明,复发率越高,新冠肺炎疫情会越来越严重;研究结果建议采取严格的隔离措施和佩戴口罩来降低疾病的传染率和二次复发。
中图分类号:
[1] 陈田木, 陈水连, 谢知, 等. 不同隐性感染和传播能力条件下的流感暴发防控措施效果模拟[J]. 中国热带医学, 2017, 17(5):470-476. CHEN Tianmu, CHEN Shuilian, XIE Zhi, et al. Simulated effectiveness of control countermeasures for influenza outbreaks based on different asymptomatic infections and transmissibility[J]. China Trop Med, 2017, 17(5):470-476. [2] LEE J, KIM J, KWON H D. Optimal control of an influenza model with seasonal forcing and age-dependent transmission rate[J]. J Theor Biol, 2013, 317(1):310-320. [3] TANG Yilei, XIAO Dongmei, ZHANG Weinian, et al. Dynamics of epidemic models with asymptomatic infection and seasonal succession[J]. Math Biosci Eng, 2017, 14(5/6):1407-1424. [4] MARTIN M L M, MBANG J, LUBUMA J, et al. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers[J]. Math Biosci Eng, 2016, 13(4):813-840. [5] 王生福, 聂麟飞. 具有随机干扰和无症状感染者的疟疾模型研究[J]. 四川师范大学学报(自然科学版), 2020, 43(5):601-607. WANG Shengfu, NIE Linfei. Study of malaria model with random disturbance and asymptomatic infection[J]. Journal of Sichuan Normal University(Natural Science), 2020, 43(5):601-607. [6] DOBROVOLNY H M. Modeling the role of asymptomatics in infection spreadwith application to SARS-CoV-2[J]. PLoS ONE, 2020, 15(8):e0236976. [7] CHEN Xingguang. Infectious disease modeling and epidemic response measures analysis considering asymptomatic infection[J]. IEEE Access, 2020, 8(1):149652-149660. [8] TANG Biao, BRAGAZZI N L, LI Qian, et al. An updated estimation of the risk of transmission of the novel coronavirus(2019-nCov)[J]. Infect Dis Model, 2020, 5(1):248-255. [9] VANLANDINGHAM K E. Relapse of herpes simplex encephalitis after conventional acyclovir therapy[J]. JAMA, 1988, 259(7):1051-1053. [10] DRIESSCHE P V D, ZOU Xingfu. Modeling relapse in infectious diseases[J]. Math Bio, 2007, 207(1):89-103. [11] 朱承澄. 具有复发的SIR扩散流行病模型的动力学行为[D]. 兰州:兰州大学, 2018. ZHU Chengcheng. Dynamic behaviour of a relapse SIR diffusion epidemic model[D]. Lanzhou: Lanzhou University, 2018. [12] 穆宇光, 徐瑞. 一类具有饱和发生率和复发的随机SIRI模型的稳定性[J]. 应用数学, 2019, 32(3):570-580. MU Yuguang, XU Rui. Stability of a stochastic SIRI model with saturated incidence and relapse[J]. Math Appl, 2019, 32(3):570-580. [13] YAN Dongxue, ZOU Xingfu. Dynamics of an epidemic model with relapse over a two-patch environment[J]. Math Biosci Eng, 2020, 17(5):6098-6127. [14] FENG Xiaomei, TENG Zhidong, ZHANG Fengqin. Global dynamics of a general class of multi-group epidemic models with latency and relapse[J]. Math Biosci Eng, 2015, 12(1):99-115. [15] ZOU Xingfu, WANG Lin, DRIESSCHE P V D. Modeling disease with latencecy and relapse[J]. Math Biosci Eng, 2007, 4(2):205-219. [16] DING Qian, LIU Yunfeng, CHEN Yuming, et al. Dynamics of a reaction-diffusion SIRI model with relapse and free boundary[J]. Math Bio Eng, 2020, 17(2):1659-1676. [17] LIU Fang, CAI Zhaobin, HUANG Jinsong, et al. Repeated COVID-19 relapse during post-discharge surveillance with viral shedding lasting for 67 days in a recovered patient infected with SARS-CoV-2-ScienceDirect[J]. J Microbiol Immunol, 2020, 54(1):101-104. [18] MUTLU E, YACOLU A. Relapse in patients with serious mental disorders during the COVID-19 outbreak: a retrospective chart review from a community mental health center[J]. Eur Arch Psy Clin N, 2020, 271(4):381-383. [19] ZHANG Tailei, TENG Zhidong. On a nonautonomous SEIRS model in epidemiology[J]. B Math Biol, 2007, 69(8):2537-2559. [20] DRIESSCHE P V D, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Bio, 2002, 180(1/2):29-48. [21] THIEME, HORST R. Persistence under relaxed point-dissipativity(with application to an endemic model)[J]. Siam J Math Anal, 1993, 24(2):407-435. [22] ZHAO Xiaoqiang. Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications[J]. Can Appl Math Q, 1995, 3(3):473-495. [23] 中国疾病预防控制中心.截至1月11日—1月25日24时新型冠状病毒肺炎疫情最新情况[EB/OL].(2020-01-12—2020-01-26)[2020-10-14]. https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11809/. [24] 国家卫生健康委员会.武汉市卫生健康委员会关于新型冠状病毒感染的肺炎情况通报[EB/OL].(2020-01-12—2020-01-26)[2020-10-14]. http://www.nhc.gov.cn/xcs/yqtb/list_gzbd_26.shtml. [25] YAN Qinling, TANG Yingling, YAN Dingding, et al. Impact of media reports on the early spread of COVID-19 epidemic[J]. J Theor Biol, 2020, 502(1):1-13. [26] World Health Organization(WHO). Statement on the first meeting of the International Health Regulations(2005)Emergency Committee regarding the outbreak of novel coronavirus(2019-nCoV)[EB/OL].(2020-01-23)[2020-10-15]. https://www.who.int/news/item/23-01-2020-statement-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov). [27] TANG Biao, WANG Xia, LI Qian, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. J Clin Med, 2020, 9(2):462. [28] 武汉市统计局. 2019年武汉市国民经济和社会发展统计公报[EB/OL].(2020-03-29)[2020-10-15]. http://tjj.wuhan.gov.cn/tjfw/tjgb/202004/t20200429_1191417.shtml. |
[1] | 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49. |
[2] | 朱彦兰,周伟,褚童,李文娜. 管理委托下的双寡头博弈的复杂动力学分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 32-45. |
[3] | 周艳,张存华. 具有集群行为的捕食者-食饵反应扩散系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(7): 73-81. |
[4] | 郭慧瑛,杨富霞,张翠萍. 有有限Ext-强Ding投射维数的模的稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 31-38. |
[5] | 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82. |
[6] | 阳忠亮, 郭改慧. 一类带有B-D功能反应的捕食-食饵模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 9-15. |
[7] | 温晓,刘琪,高振,曾维新,吕咸青. 局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用[J]. 《山东大学学报(理学版)》, 2020, 55(2): 109-117. |
[8] | 陈璐,张晓光. 一类自适应网络上的传染病模型研究[J]. 《山东大学学报(理学版)》, 2019, 54(9): 76-82. |
[9] | 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107. |
[10] | 张瑜,赵仁育. Gorenstein FP-投射模及其稳定性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 79-85. |
[11] | 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38. |
[12] | 李翠平,高兴宝. 求解具有约束的l1-范数问题的神经网络模型[J]. 《山东大学学报(理学版)》, 2018, 53(12): 90-98. |
[13] | 冯孝周,徐敏,王国珲. 具有B-D反应项与毒素影响的捕食系统的共存解[J]. 《山东大学学报(理学版)》, 2018, 53(12): 53-61. |
[14] | 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24. |
[15] | 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82. |
|