您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (2): 93-104.doi: 10.6040/j.issn.1671-9352.0.2021.805

• • 上一篇    

修改的Rota-Baxter 配对模与修改的Rota-Baxter配对余模

房莹,郑慧慧,张良云*   

  1. 南京农业大学理学院, 江苏 南京 210095
  • 发布日期:2023-02-12
  • 作者简介:房莹(1996— ), 女, 硕士研究生, 研究方向为Hopf代数. E-mail:1091240937@qq.com*通信作者简介:张良云(1964— ), 男, 博士, 教授, 博士生导师, 研究方向为Hopf代数. E-mail:zlyun@njau.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项基金(ZJ22195010);国家自然科学基金资助项目(11571173)

Modified Rota-Baxter paired modules and modified Rota-Baxter paired comodules

FANG Ying, ZHENG Hui-hui, ZHANG Liang-yun*   

  1. College of Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Published:2023-02-12

摘要: 引入了修改的Rota-Baxter配对模及修改的Rota-Baxter配对余模的概念,并由Hopf代数分别构造了修改的Rota-Baxter配对模及修改的Rota-Baxter配对余模,最后引入了修改的Rota-Baxter配对Hopf模的概念,并给出了修改的Rota-Baxter配对Hopf模的结构定理。

关键词: 修改的Rota-Baxter配对模, 修改的Rota-Baxter配对余模, 修改的Rota-Baxter配对Hopf模

Abstract: The concepts of modified Rota-Baxter paired module and modified Rota-Baxter paired comodule are introduced. Then modified Rota-Baxter paired module and modified Rota-Baxter paired comodule are constructed by Hopf algebras respectively. Finally, the concept of modified Rota-Baxter paired Hopf module is introduced, and its structure theorem is given.

Key words: modified Rota-Baxter paired module, modified Rota-Baxter paired comodule, modified Rota-Baxter paired Hopf module

中图分类号: 

  • O153.3
[1] ROTAG C. Baxter algebras and combinatorial identites Ⅰ,Ⅱ[J]. Bulletin of the American Mathematical Society, 1969, 75:325-329.
[2] GUO Li. An introduction to Rota-Baxter algebra[M]. Beijing: Higher Education Press, 2012.
[3] QIAO Li, PEI Jun. Representations of polynomial Rota-Baxter algebras[J]. Journal of Pure and Applied Algebra, 2018, 222:1738-1757.
[4] GUO Li, LIN Zongzhu. Representations and modules of Rota-Baxter algebras[J/OL].(2019-05-04)[2021-10-20]. arXiv: 1905.01531.
[5] ZHENG Huihui, GUO Li, ZHANG Liangyun. Rota-Baxter paired modules and their constructions from Hopf algebras[J]. Journal of Algebra, 2020, 559:601-624.
[6] ZHANG Xigou, GAO Xing, GUO Li. Modified Rota-Baxter algebras, shuffle products and Hopf algebras[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(6):3047-3072.
[7] SWEEDLER M E. Hopf algebras[M]. New York: Benjamin, 1969.
[8] EBRAHIMI-FARD K. Loday-type algebras and the Rota-Baxter relation[J]. Letters in Mathematical Physics, 2002, 61:139-147.
[9] QIAO Li, GAO Xing, GUO Li. Rota-Baxter modules toward derived functors[J]. Algebras and Representation Theory, 2019, 22:321-343.
[10] JIAN Runqiang. Constructions of Rota-Baxter algebras from idempotent-like elements[J]. Letters in Mathematical Physics, 2017, 107(2):367-374.
[11] 张雨欣, 郑斯航, 房莹,等. Rota-Baxter配对模系统和弯曲Rota-Baxter配对模系统[J]. 山东大学学报(理学版), 2021, 56(8):6-14. ZHANG Yuxin, ZHENG Sihang, FANG Ying, et al. Rota-Baxter paired module system and curved Rota-Baxter paired module system[J]. Journal of Shandong University(Natural Science), 2021, 56(8):6-14.
[12] ZHENG Huihui, ZHANG Yuxin, ZHANG Liangyun. Rota-Baxter paired comodule and Rota-Baxter paired Hopf module[J]. Colloquium Mathematicum, 2022, 168(1):59-83.
[13] JIAN Runqiang, ZHANG Jiao. Rota-Baxter coalgebras[J/OL].(2016-03-10)[2021-10-22]. Mathematics. arXiv: 1409.3052.
[14] 刘贵龙. 模与余模间的对偶[J]. 数学学报(中文版), 1994, 37(2):150-155. LIU Guilong. The duality between modules and comodules[J]. Acta Mathematica Sinica(Chinese Series), 1994, 37(2):150-155.
[1] 尹俊琦, 杨刚. Gorenstein DG-内射复形[J]. 《山东大学学报(理学版)》, 2022, 57(10): 28-33.
[2] 郭慧瑛,张翠萍. Ext-强Ding投射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 31-36.
[3] 赵跳,章超. 自内射Nakayama代数的q-Cartan矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(10): 46-51.
[4] 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45.
[5] 张翠萍,刘雅娟. 强Gorenstein C-内射模和强Gorenstein C-平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 24-30.
[6] 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107.
[7] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26.
[8] 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15.
[9] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8.
[10] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[11] 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24.
[12] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[13] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[14] 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23.
[15] 孙彦中,杨晓燕. 相对于半对偶模的Gorenstein AC-投射模[J]. 山东大学学报(理学版), 2017, 52(10): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!