《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (6): 98-102.doi: 10.6040/j.issn.1671-9352.0.2023.047
Baijun GAO1(),Juping TANG2,Zhichao GAO3,*(),Ju SONG4
摘要:
结合群类理论, 将群类
中图分类号:
1 | GUO Wenbin . The theory of classes of groups[M]. Boston: Kluwer Academic Publishers, 2000. |
2 | HUPPERT B , BLACKBURN N . Finite groups Ⅲ[M]. New York: Springer-Verlag, 1982. |
3 |
ARAD Z , WARD M B . New criteria for the solvability of finite groups[J]. Journal of Algebra, 1982, 77 (1): 234- 246.
doi: 10.1016/0021-8693(82)90288-5 |
4 |
WANG Yanming . Finite groups with some subgroups of Sylow subgroups c-supplemented[J]. Journal of Algebra, 2000, 224 (2): 467- 478.
doi: 10.1006/jabr.1999.8079 |
5 |
QIAN Guohua . Finite groups whose maximal subgroups of Sylow p-subgroups admit a p-solvable supplement[J]. Science China Mathematics, 2013, 56 (5): 1015- 1018.
doi: 10.1007/s11425-012-4485-9 |
6 | MIAO Long , LEMPKEN W . On $\mathscr{M}$-supplemented subgroups of finite groups[J]. Journal of Group Theory, 2009, 12 (2): 271- 287. |
7 |
BALLESTER-BOLINCHES A , GUO X Y . On complemented subgroups of finite groups[J]. Archiv Der Mathematik, 1999, 72 (3): 161- 166.
doi: 10.1007/s000130050317 |
8 |
MONAKHOV V S , TROFIMUK A A . On the supersolubility of a finite group with NS-supplemented subgroups[J]. Acta Mathematica Hungarica, 2020, 160 (1): 161- 167.
doi: 10.1007/s10474-019-00997-4 |
9 |
MONAKHOV V S , KNIAHINA V N . Finite groups with complemented subgroups of prime orders[J]. Journal of Group Theory, 2015, 18 (6): 905- 912.
doi: 10.1515/jgth-2015-0023 |
10 |
MIAO Long , TANG Juping . A new condition for solvable groups[J]. Journal of Pure and Applied Algebra, 2017, 221 (10): 2504- 2510.
doi: 10.1016/j.jpaa.2016.12.035 |
11 |
ZHANG Jia , QIU Tingting , MIAO Long , et al. Notes on solvability and p-supersolvability of finite groups[J]. Algebra Colloquium, 2019, 26 (1): 139- 146.
doi: 10.1142/S1005386719000130 |
12 |
ZHANG Jia , MIAO Long , BAO Hongwei . On nearly $\mathscr{M}$-supplemented primary subgroups of finite groups[J]. Communications in Algebra, 2019, 47 (2): 896- 903.
doi: 10.1080/00927872.2018.1498868 |
13 | DONG Shuqin , QIU Tingting , GAO Zhichao , et al. A generalization of Skiba's problem[J]. Publicationes Mathematicae Debrecen, 2022, 100 (1/2): 1- 10. |
14 |
DONG Shuqin , MIAO Long , GAO Baijun . On weakly $\mathscr{M}$-supplemented subgroups of finite groups[J]. Communications in Algebra, 2021, 49 (9): 4021- 4027.
doi: 10.1080/00927872.2021.1910701 |
15 |
GAO Zhichao , LI Jinbao , MIAO Long . On CAPSp*-subgroups of finite groups[J]. Communications in Algebra, 2021, 49 (3): 1120- 1127.
doi: 10.1080/00927872.2020.1828443 |
16 |
GUO W B , SHUM K P , SKIBA A N . G-covering subgroup systems for the classes of supersoluble and nilpotent groups[J]. Israel Journal of Mathematics, 2003, 138 (1): 125- 138.
doi: 10.1007/BF02783422 |
17 | ISAACS I M . Finite group theory[M]. Providence: American Mathematical Society, 2008. |
18 | KURZWEIL H , STELLMACHER B . The theory of finite groups: an introduction[M]. New York: Springer, 2004. |
[1] | 曹建基,王俊新,白鹏飞. 蕴含交换极大子群的极大类3-群上的光滑斜态射[J]. 《山东大学学报(理学版)》, 2024, 59(4): 23-30. |
[2] | 陈心丹,许丽,缪龙,刘威. 有限群的2-极大子群的边界因子[J]. 《山东大学学报(理学版)》, 2023, 58(2): 1-5. |
[3] | 史江涛,任惠瑄. 关于非幂零极大子群皆正规的有限群具有Sylow塔的注记[J]. 《山东大学学报(理学版)》, 2021, 56(8): 58-60. |
[4] | 刘鑫,吴珍凤,杨南迎. 有限群的m-S-可补子群[J]. 《山东大学学报(理学版)》, 2021, 56(4): 8-13. |
[5] | 毛月梅,杨南迎. 有限群的p-幂零性和超可解性[J]. 山东大学学报(理学版), 2016, 51(4): 39-42. |
[6] | 高辉,高胜哲*,尹丽. 子群的θ-完备和群的结构[J]. 山东大学学报(理学版), 2014, 49(03): 43-45. |
[7] | 高辉,高胜哲,尹丽. 关于极大子群的θ-偶[J]. J4, 2011, 46(2): 97-100. |
[8] | 普昭年1,汤菊萍2,顾春华3. 局部子群的性质对群构造的影响[J]. J4, 2011, 46(12): 51-54. |
[9] | 王俊新. 几则有限群可解的条件[J]. J4, 2009, 44(8): 35-38. |
|