JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (06): 75-82.doi: 10.6040/j.issn.1671-9352.0.2014.571

Previous Articles     Next Articles

Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings

KONG Liang1, CAO Huai-xin2   

  1. 1. Institute of Applied Mathematics, Shangluo University, Shangluo 726000, Shaanxi, China;
    2. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
  • Received:2014-12-22 Revised:2015-04-21 Online:2015-06-20 Published:2015-07-31

Abstract: Firstly, In real normed linear spaces, the definition of ε-approximate square isosceles-orthogonality preserving mapping is given. Some sufficient conditions for a linear mapping to be an ε-approximate square isosceles-orthogonality preserving mapping are given. Secondly, when the mapping is bounded, the characterization of ε-approximate square isosceles-orthogonality preserving linear mapping is obtained. Finally, the perturbations of ε-approximate square isosceles-orthogonality preserving linear mapping are given.

Key words: ε-approximate square isosceles-orthogonality, δ-approximate isometry, isosceles-orthogonality, ε-approximate square isosceles-orthogonality preserving mapping

CLC Number: 

  • O177.1
[1] ROBERTS B D. On the geometry of abstract vector space[J]. Thoku Math J, 1934, 39:42-59.
[2] BIRKHOFF G. Orthogonality in linear metric space[J]. Duke Math J, 1935, 1(2):169-172.
[3] JAMES R C. Orthogonality in normed linear space[J]. Duke Math J, 1945, 12(2):291-302.
[4] FATHI B S. An extension of the notion of orthogonality to Banach spaces[J]. J Math Anal Appl, 2002, 267(1):29-47.
[5] 付向红, 黎永锦. Banach空间的非常B-正交性[J]. 中山大学学报:自然科学版, 2008, 47(1):116-117. FU Xianghong, LI Yongjin. The very B-orthogonality in Banach space[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(1):116-117.
[6] 杨冲, 张登华. Banach空间中Birkhoff正交性的刻画[J]. 数学的实践与认识, 2008, 38(9):187-192. YANG Chong, ZHANG Denghua. Characterizations of Birkhoff orthogonality in Banach space[J]. Journal of Mathematics in Practice and Theory, 2008, 38(9):187-192.
[7] DING G G. Isometric and almost isometric operator[J]. Acta Math Sci, 1984, 4(2):221-226.
[8] CHMIELI?SKI J. Linear mappings approximately preserving orthogonality[J]. J Math Anal Appl, 2005, 304(1):158-169.
[9] CHMIELI?SKI J. Stability of the orthogonality preserving property in finite-dimensional inner product spaces[J]. J Math Anal Appl, 2006, 318(2):433-443.
[10] BLANCO A, TURNŠEK A. On maps that preserve orthogonality in normed spaces[J]. Trans Proc Roy Soc Edinburgh: Sect A, 2006, 136(4):709-716.
[11] TURNŠEK A. On mappings approximately preserving orthogonality[J]. J Math Anal Appl, 2007, 336(1):625-631.
[12] CHMIELI?SKI J. Remarks on orthogonality preserving mappings in normed spaces and some stability problems[J]. Banach J Math Anal, 2007, 1(1):117-124.
[13] 孔亮, 曹怀信. 保正交映射与正交性方程的稳定性[J]. 陕西师范大学学报:自然科学版, 2008, 36(5):10-14. KONG Liang, CAO Huaixin. Stability of orthogonality preserving mappings and the orthogonality equaion[J]. Journal of Shaanxi Normal University: Natural Science Editon, 2008, 36(5):10-14.
[14] ILIŠEVIX D, TURNŠEK A. Approximately orthogonality preserving mappings on C*-modules[J]. J Math Anal Appl, 2008, 341(1):298-308.
[15] 孔亮, 曹怀信. ε-近似保正交映射的稳定性与扰动[J]. 数学学报:中文版, 2010, 53(1):61-66. KONG Liang, CAO Huaixin. ε-Approximate orthogonality preserving mappings[J]. Acta Mathematica Sinica: Chinese Series, 2010, 53(1):61-66.
[16] CHMIELI?SKI J, WÓJCIK P. Isosceles-orthogonality preserving property and its stability[J]. Nonlinear Anal, 2010, 72(3):1445-1453.
[17] 崔建莲, 候晋川. C*代数上保持不定正交性的线性映射[J]. 数学年刊, 2004, 25A(4):437-443. CUI Jianlian, HOU Jinchuan. Linear maps preserving indefinite orthogonality on C*-algebras[J]. Chinese Annal of Mathematics, 2004, 25A(4):437-443.
[18] 张芳娟, 吉国兴. B(H)上保正交性的可加映射[J]. 陕西师范大学学报:自然科学版, 2005, 33(4):21-25. ZHANG Fangjuan, JI Guoxing. Additive maps preserving orthogonality on B(H)[J]. Journal of Shaanxi Normal University:Natural Science Editon, 2005, 33(4):21-25.
[19] WÓJIK P. Linear mappings preserving ρ-orthogonality[J]. J Math Anal Appl, 2012, 386(1):171-176.
[20] BURGOS M. Orthogonality preserving linear maps on C*-algebras with non-zero socles[J]. J Math Anal Appl, 2013, 401(2):479-487.
[1] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[2] ZHANG Qiao-wei, GUO Zhi-hua, CAO Huai-xin. Topological effect algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 97-103.
[3] WANG Li-li, CHEN Zheng-li. Some research about Wigner-Yanase-Dyson skew information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 43-47.
[4] WANG Xiao-xia, CAO Huai-xin, ZHA Liao. The influences of quantum channels on the generalized robustness of entanglement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 127-134.
[5] FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14.
[6] LIANG Wen-ting, CHEN Zheng-li. Strongly and weakly separable operators on tensor product spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 19-24.
[7] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[8] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
[9] LI Jun, ZHANG Jian-hua, CHEN Lin. Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 76-80.
[10] MENG Jiao, JI Guo-xing. Additive maps on standard operator algebras preserving divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 20-23.
[11] QI Wei-qing, JI Pei-sheng, LU Hai-ning. General solution and stability of bi-cubic functional equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 60-66.
[12] YANG Gong-lin, JI Pei-sheng. Some properties of primitive ideal submodules in Hilbert C*-modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 50-55.
[13] LI Rong, JI Guo-xing*. Additive maps preserving operator range or kernel inclusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 42-45.
[14] BU Mei-hua,JI Pei-sheng,QI Wei-qing . Lie ideas of the nest subalgebras in hyperfinite factors [J]. J4, 2007, 42(10): 69-75 .
[15] WANG Qiao,LIU Xiao-ji* . Characterization and perturbation of the generalized Drazin inverse for Banach space operators [J]. J4, 2008, 43(8): 42-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!