JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (4): 45-53.doi: 10.6040/j.issn.1671-9352.0.2018.225

Previous Articles     Next Articles

The(~)-good congruences on normal ortho-u-monoids

WU Dan-dan, GONG Chun-mei*   

  1. Department of Mathematics, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2019-04-08

Abstract: (~)-good congruences on normal ortho-u-monoids are characterized by means of(~)-good congruence pairs. The results about congruences on normal orthogroups in regular semigroups are generalized to(~)-semiabundant semigroups.

Key words: (~)-good congruences, normal ortho-u-monoids, (~)-good congruence pair

CLC Number: 

  • O152.7
[1] GUO Yuqi, SHUM Kar Ping, GONG Chunmei. On(*,~)-Greens relations and ortho-lc-monoids[J]. Communications in Algebra, 2011, 39(1):5-31.
[2] GONG Chunmei, GUO Yuqi, SHUM Kar Ping. Ortho-u-monoids[J]. Acta Mathematica Sinica, English series, 2011, 27(5):831-844.
[3] 郭聿琦,宫春梅,孔祥智.正则纯正左消幺半群并半群上的(*,~)-好同余[J].代数集刊,2014, 21(2):235-248. GUO Yuqi, GONG Chunmei, KONG Xiangzhi.(*,~)-good congruences on regular ortho-lc-monoids[J]. Algebra Colloquium, 2014, 21(2):235-248.
[4] 宫春梅,任学明,袁莹.正规纯正左消幺半群并半群上的(*,~)-好同余[J].数学进展,2015, 44(3):369-378. GONG Chunmei, REN Xueming, YUAN Ying. The(*,~)-good congruences on normal ortho-lc-monoids[J]. Adavances in Mathematics(China), 2015, 44(3):369-378.
[5] ZHAO Jinxing, GUO Yuqi, LIU Yun. A note on the structure of ortho-lc-monoids[J]. Southeast Asian Bulletin of Mathematics, 2007, 31(2):407-414.
[6] HOWIE J M. Fundamentals of semigroup theory[M]. Oxford: Oxford Science Publications, 1995.
[7] FOUNTAIN J B. Abundant semigroups[J]. Proc London Math Soc, 1982, 44(3):103-129.
[1] KONG Xiang-jun, WANG Pei. Good congruences associated with multiplicative quasi-adequate transversals [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 1-3.
[2] LIANG Xing-liang, WU Su-peng, REN Jun. Characterization of monoids by C(P')acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 9-13.
[3] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[4] WANG Dan, WANG Zheng-pan. Characterizing a band variety in terms of forbidden subsemigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 6-8.
[5] QIAO Hu-sheng, SHI Xue-qin. On homological classification of weakly torsion free Rees factor S-posets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 49-52.
[6] GONG Chun-mei, FENG Li-xia, REN Xue-ming. (*,~)-good congruences on completely J *,~-simple semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 11-16.
[7] QIAO Hu-sheng, ZHAO Ting-ting. On products of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 16-19.
[8] WANG Shou-feng. λ-Semidirect products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 20-23.
[9] QIAO Hu-sheng, LIAO Min-ying. GP-coherent monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 1-4.
[10] WANG Yong-duo, MA Ya-jun. Simple dual Rickart modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 5-9.
[11] QIAO Hu-sheng, JIN Wen-gang. On monoids over which all weakly injective right S-acts are regular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 1-3.
[12] LUO Yong-gui. Maximal(regular)subsemigroups of the semigroup W(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 7-11.
[13] WANG Yong-duo, HE Jian. Characterizations of rings relative to an ideal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 81-84.
[14] WANG Shou-feng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 90-93.
[15] QIAO Hu-sheng, BAI Yong-fa. Characterization of monoids by inverse S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Fang-yuan, MENG Xian-jia, TANG Zhan-yong, FANG Ding-yi, GONG Xiao-qing. Android application protection based on smali code obfuscation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 44 -50 .
[2] LIAO Xiang-wen, ZHANG Ling-ying, WEI Jing-jing, GUI Lin, CHENG Xue-qi, CHEN Guo-long. User influence analysis of social media with temporal characteristics[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 1 -12 .
[3] GU Shen-ming, LU Jin-lu, WU Wei-zhi, ZHUANG Yu-bin. Local optimal granularity selections in generalized multi-scale decision systems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 1 -8 .
[4] CAO Wei-dong, DAI Tao, YU Jin-biao, WANG Xiao-hong, SHI An-feng. Improvement on the solution of pressure equation based on alternating direction in chemical flooding model[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 88 -94 .
[5] LI Jin-hai, WU Wei-zhi. Granular computing approach for formal concept analysis and its research outlooks[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 1 -12 .
[6] SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran. Chinese entity relation extraction algorithms based on COAE2016 datasets[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 7 -12 .
[7] YE Xiao-ming, CHEN Xing-shu, YANG Li, WANG Wen-xian, ZHU Yi, SHAO Guo-lin, LIANG Gang. Anomaly detection model of host group based on graph-evolution events[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 1 -11 .
[8] Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51 -55 .
[9] WAN Peng-fei, GAO Xing-bao. Novel artificial bee colony algorithm based on objective space decomposition for solving multi-objective optimization problems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 56 -66 .
[10] SHAO Yong. Semilattice-ordered completely regular periodic semigroups[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1 -5 .