《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 12-22.doi: 10.6040/j.issn.1671-9352.0.2019.040
方舒,张太雷*,李志民
FANG Shu, ZHANG Tai-lei*, LI Zhi-min
摘要: 考虑海洛因吸食者的复吸性,针对海洛因毒品传播建立了一类具有心理效应的随机模型。利用停时理论,分析了模型全局唯一正解的存在性。当对应的确定性模型基本再生数小于等于1时, 随机模型的无海洛因传播平衡点是全局随机渐近稳定的;当对应的确定性模型基本再生数大于1时, 随机模型的解围绕确定性模型海洛因传播平衡点进行振荡, 并得到模型的解平均持续存在和导致毒品灭绝的充分条件。最后, 数值模拟进一步显示了模型的动力学行为。
中图分类号:
[1] 纪安琼, 王儒芳. 海洛因依赖者复吸情况解决新思路[J]. 河南司法警官职业学院学报, 2018, 16(3):112-114. JI Anqiong, WANG Rufang. New ideas to solve the relapse situation of heroin addicts[J]. Journal of Henan Judicial Police Vocational College, 2018, 16(3):112-114. [2] WHITE E, COMISKEY C. Heroin epidemics treatment and ODE modelling[J]. Mathematical Biosciences, 2007, 208(1):312-324. [3] MULONE G, STRAUGHAN B. A note on heroin epidemics[J]. Mathematical Biosciences, 2009, 218(2):138-141. [4] SAMANTA G P. Dynamic behavior for a nonautonomous heroin epidemic model with time delay[J]. Journal of Applied Mathematics and Computing, 2011, 35(1/2):161-178. [5] FANG Bin, LI Xuezhi, MARTCHEVA M, et al. Global stability for a heroin model with age-dependent susceptibility[J]. Journal of Systems Science and Complexity, 2015, 28(6):1243-1257. [6] 王诗雪, 刘俊利. 一类具有心理效应的海洛因毒品传播模型的全局稳定性[J]. 纺织高校基础科学学报, 2018, 31(3):329-334. WANG Shixue, LIU Junli. Global stability of a heroin epidemic model with psychological effect[J]. Basic Sciences Journal of Textile Universities, 2018, 31(3):329-334. [7] 周艳丽, 张卫国, 原三领. 一类随机SIRS传染病模型的持久性和灭绝性[J]. 生物数学学报, 2015, 30(1):79-92. ZHOU Yanli, ZHANG Weiguo, YUAN Sanling. Persistence and extinction in stochastic SIRS epidemic model[J]. Journal of Biomathematics, 2015, 30(1):79-92. [8] ZHAO Yanan, JIANG Daqing. The threshold of a stochastic SIRS epidemic model with saturated incidence[J]. Applied Mathematics Letters, 2014, 34(1):90-93. [9] XU Chaoqun, YUAN Sanling. An analogue of break-even concentration in a simple stochastic chemostat model[J]. Applied Mathematics Letters, 2015, 48:62-68. [10] SAHA T, CHAKRABARTI C. Stochastic analysis of prey-predator model with stage structure for prey[J]. Journal of Applied Mathematics and Computing, 2011, 35(1/2):195-209. [11] 张艳宏, 许超群, 原三领. 一类接触率受到噪声干扰的随机SIS流行病模型研究[J]. 上海理工大学学报, 2015, 37(6):512-516. ZHANG Yanhong, XU Chaoqun, YUAN Sanling. Stochastic SIS epidemic model with contract rate influenced by noise[J]. Journal of University of Shanghai for Science and Technology, 2015, 37(6):512-516. [12] DRIESSCHE P V D, JAMES W. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48. [13] MAO Xuerong, MARION G, RENSHAW E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochastic Processes and Their Applications, 2002, 97(1):95-110. [14] MAO Xuerong. Stochastic differential equations and applications[M]. Chichester: Horwood Publishing, 2008. |
[1] | 高建忠,张太雷. 一类具有随机效应的SIRI传染病模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(7): 89-99. |
[2] | 谭韧,殷肖川,焦贤龙,廉哲,陈玉鑫. 一种软件定义APT攻击移动目标防御网络架构[J]. 山东大学学报(理学版), 2018, 53(1): 38-45. |
[3] | 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17. |
[4] | 周艳丽1,2,张卫国1. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J]. J4, 2013, 48(10): 68-77. |
|