您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 12-22.doi: 10.6040/j.issn.1671-9352.0.2019.040

• • 上一篇    下一篇

一类具有心理效应的海洛因毒品传播随机模型

方舒,张太雷*,李志民   

  1. 长安大学理学院, 陕西 西安 710064
  • 发布日期:2020-01-10
  • 作者简介:方舒(1995— ),女, 硕士研究生, 研究方向为生物数学. E-mail:fsh02011@126.com*通信作者简介:张太雷(1980— ), 男, 博士, 教授, 研究方向为常微分及其应用. E-mail:t.l.zhang@126.com
  • 基金资助:
    国家自然科学基金资助项目(11701041);陕西省自然科学基础研究计划资助项目(2018JM1011);长安大学中央高校基本科研业务费专项资金资助(300102129202);长安大学研究生科研创新实践项目(300103002110)

Stochastic model of heroin drug dissemination with psychological effects

FANG Shu, ZHANG Tai-lei*, LI Zhi-min   

  1. School of Science, Changan University, Xian 710064, Shaanxi, China
  • Published:2020-01-10

摘要: 考虑海洛因吸食者的复吸性,针对海洛因毒品传播建立了一类具有心理效应的随机模型。利用停时理论,分析了模型全局唯一正解的存在性。当对应的确定性模型基本再生数小于等于1时, 随机模型的无海洛因传播平衡点是全局随机渐近稳定的;当对应的确定性模型基本再生数大于1时, 随机模型的解围绕确定性模型海洛因传播平衡点进行振荡, 并得到模型的解平均持续存在和导致毒品灭绝的充分条件。最后, 数值模拟进一步显示了模型的动力学行为。

关键词: 随机模型, 振荡行为, 持续性, 灭绝性

Abstract: In this paper, considering the relapse of heroin addicts, we establish a stochastic model with psychological effects for the transmission of heroin drugs. The existence of global unique positive solutions of the model is proved by using stopping time theory. When the basic reproduction number of the corresponding deterministic model is equal or less than 1, the heroin-free propagation equilibrium point of the stochastic model is globally randomly asymptotically stable. It shows that the solutions of the stochastic model oscillates near the corresponding deterministic model heroin propagation equilibrium point when the basic reproduction number of the deterministic model is greater than 1. Sufficient conditions are obtained for the average persistence of solutions and the extinction of drugs. Finally, the numerical simulation further shows the dynamic behavior of the model.

Key words: stochastic model, oscillating behavior, persistence, extinction

中图分类号: 

  • O175.1
[1] 纪安琼, 王儒芳. 海洛因依赖者复吸情况解决新思路[J]. 河南司法警官职业学院学报, 2018, 16(3):112-114. JI Anqiong, WANG Rufang. New ideas to solve the relapse situation of heroin addicts[J]. Journal of Henan Judicial Police Vocational College, 2018, 16(3):112-114.
[2] WHITE E, COMISKEY C. Heroin epidemics treatment and ODE modelling[J]. Mathematical Biosciences, 2007, 208(1):312-324.
[3] MULONE G, STRAUGHAN B. A note on heroin epidemics[J]. Mathematical Biosciences, 2009, 218(2):138-141.
[4] SAMANTA G P. Dynamic behavior for a nonautonomous heroin epidemic model with time delay[J]. Journal of Applied Mathematics and Computing, 2011, 35(1/2):161-178.
[5] FANG Bin, LI Xuezhi, MARTCHEVA M, et al. Global stability for a heroin model with age-dependent susceptibility[J]. Journal of Systems Science and Complexity, 2015, 28(6):1243-1257.
[6] 王诗雪, 刘俊利. 一类具有心理效应的海洛因毒品传播模型的全局稳定性[J]. 纺织高校基础科学学报, 2018, 31(3):329-334. WANG Shixue, LIU Junli. Global stability of a heroin epidemic model with psychological effect[J]. Basic Sciences Journal of Textile Universities, 2018, 31(3):329-334.
[7] 周艳丽, 张卫国, 原三领. 一类随机SIRS传染病模型的持久性和灭绝性[J]. 生物数学学报, 2015, 30(1):79-92. ZHOU Yanli, ZHANG Weiguo, YUAN Sanling. Persistence and extinction in stochastic SIRS epidemic model[J]. Journal of Biomathematics, 2015, 30(1):79-92.
[8] ZHAO Yanan, JIANG Daqing. The threshold of a stochastic SIRS epidemic model with saturated incidence[J]. Applied Mathematics Letters, 2014, 34(1):90-93.
[9] XU Chaoqun, YUAN Sanling. An analogue of break-even concentration in a simple stochastic chemostat model[J]. Applied Mathematics Letters, 2015, 48:62-68.
[10] SAHA T, CHAKRABARTI C. Stochastic analysis of prey-predator model with stage structure for prey[J]. Journal of Applied Mathematics and Computing, 2011, 35(1/2):195-209.
[11] 张艳宏, 许超群, 原三领. 一类接触率受到噪声干扰的随机SIS流行病模型研究[J]. 上海理工大学学报, 2015, 37(6):512-516. ZHANG Yanhong, XU Chaoqun, YUAN Sanling. Stochastic SIS epidemic model with contract rate influenced by noise[J]. Journal of University of Shanghai for Science and Technology, 2015, 37(6):512-516.
[12] DRIESSCHE P V D, JAMES W. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48.
[13] MAO Xuerong, MARION G, RENSHAW E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochastic Processes and Their Applications, 2002, 97(1):95-110.
[14] MAO Xuerong. Stochastic differential equations and applications[M]. Chichester: Horwood Publishing, 2008.
[1] 高建忠,张太雷. 一类具有随机效应的SIRI传染病模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(7): 89-99.
[2] 谭韧,殷肖川,焦贤龙,廉哲,陈玉鑫. 一种软件定义APT攻击移动目标防御网络架构[J]. 山东大学学报(理学版), 2018, 53(1): 38-45.
[3] 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17.
[4] 周艳丽1,2,张卫国1. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J]. J4, 2013, 48(10): 68-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘方圆,孟宪佳,汤战勇,房鼎益,龚晓庆. 基于smali代码混淆的Android应用保护方法Symbol`@@[J]. 山东大学学报(理学版), 2017, 52(3): 44 -50 .
[2] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1 -12 .
[3] 顾沈明,陆瑾璐,吴伟志,庄宇斌. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8): 1 -8 .
[4] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .
[5] 叶晓鸣,陈兴蜀,杨力,王文贤,朱毅,邵国林,梁刚. 基于图演化事件的主机群异常检测模型[J]. 山东大学学报(理学版), 2018, 53(9): 1 -11 .
[6] 巫朝霞,王佳琪. 一种无线单频谱安全拍卖算法[J]. 《山东大学学报(理学版)》, 2018, 53(11): 51 -55 .
[7] 万鹏飞,高兴宝. 一种解多目标优化问题的基于分解的人工蜂群算法[J]. 山东大学学报 (理学版), 2018, 53(11): 56 -66 .
[8] 王鑫,左万利,朱枫彤,王英. 基于重要结点的社区发现算法[J]. 山东大学学报 (理学版), 2018, 53(11): 67 -77 .
[9] 王爱兰,宋巍涛,赵秀凤. 剩余类环上扩张因子的性质[J]. 山东大学学报 (理学版), 2018, 53(11): 78 -84 .
[10] 王苒群,左连翠. 不含4-圈和5-圈的平面图的线性2-荫度[J]. J4, 2012, 47(6): 71 -75 .