您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 57-65.doi: 10.6040/j.issn.1671-9352.0.2020.559

• • 上一篇    

关于微分-差分多项式的零点和唯一性

陈文杰,孙桂荣,黄志刚*   

  1. 苏州科技大学数学科学学院, 江苏 苏州 215009
  • 发布日期:2021-04-13
  • 作者简介:陈文杰(1993— ),女,硕士研究生,研究方向为复分析. E-mail:2659238103@qq.com*通信作者简介:黄志刚(1975— ),男,博士,教授,研究方向为复分析. E-mail:hzg@mail.usts.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11971344)

On zeros and uniqueness of differential-difference polynomials

CHEN Wen-jie, SUN Gui-rong, HUANG Zhi-gang*   

  1. School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
  • Published:2021-04-13

摘要: 利用Nevanlinna值分布理论,研究零级超越整函数的微分-差分多项式[f(qz+c)nmj=1 f (j)(z)](k)关于小函数α(z)的零点分布,其中n、 j、m、k都是正整数且n≥(m(m+5))/2+k+2;此外,得到了2个零级超越整函数的微分-差分多项式[f(qz+c)nmj=1 f (j)(z)](k)与[g(qz+c)nmj=1g(j)(z)](k)CM分担一个值的唯一性结果,其中n、j、m、k都是正整数且n≥(m(m+7))/2+2k+5。

关键词: 零点, 唯一性, q-位移, 微分-差分多项式

Abstract: By Nevanlinna value distribution theory, this paper investigates the zeros distribution of a differential-difference polynomial of a transcendental entire function with zero order [f(qz+c)nmj=1f (j)(z)](k) concerning a small function α(z), where n,j,m,k are positive integers and n≥(m(m+5))/2+k+2. Furthermore, the uniqueness result of a differential-difference polynomial [f(qz+c)nmj=1f (j)(z)](k) sharing one value with the other differential-difference polynomial [g(qz+c)nmj=1g(j)(z)](k) is obtained, where n,j,m,k are positive integers and n≥(m(m+7))/2+2k+5.

Key words: zeros, uniqueness, q-shift, differential-difference polynomial

中图分类号: 

  • O174.5
[1] HAYMAN W K. Meromorphic functions[M]. Oxford: Clarendon Press, 1964.
[2] 杨乐. 值分布理论及其新研究[M]. 北京: 科学出版社, 1982. YANG Le. Value distribution theory and its new research[M]. Beijing: Science Press, 1982.
[3] 仪洪勋, 杨重骏. 亚纯函数的唯一性理论[M]. 北京: 科学出版社, 1995. YI Hongxun, YANG Chungchun. Uniqueness theory of meromorphic functions[M]. Beijing: Science Press, 1995.
[4] LIU Kai, QI Xiaoguang. Meromorphic solutions of q-shift difference equations[J]. Annales Polonici Mathematici, 2011, 101(3):215-225.
[5] HAYMAN W K. Picard values of meromorphic functions and their derivatives[J]. Annals of Mathematics, 1959, 70(2):9-42.
[6] MUES E. Über ein problem von Hayman[J]. Mathematische Zeitschrift, 1979, 164(3):239-259.
[7] BERGWEILER W, EREMENKO A. On the singularities of the inverse to a meromorphic function of finiteorder[J]. Rev Mat Iberoamericana, 1995, 11(2):355-373.
[8] CHEN Huaihui, FANG Mingliang. On the value distribution of f nf '[J]. Sci China Ser A, 1995, 38(7):789-798.
[9] FANG Mingliang, HUA Xinhou. Entire functions that share one value[J]. Nanjing Daxue Xuebao Shuxue Bannian Kan, 1996, 13(1):44-48.
[10] YANG Chungchun, HUA Xinhou. Uniqueness and value sharing of meromorphic functions[J]. Annales Academiae Scientiarum Fennicae Mathematica, 1997, 22(2):395-406.
[11] 张伟杰, 王新利, 王汉杰. 亚纯函数微分多项式IM分担值的唯一性[J]. 山东大学学报(理学版), 2019, 54(8):90-96. ZHANG Weijie, WANG Xinli, WANG Hanjie. Uniqueness of differential polynomials of meromorphic functions IM sharing a value[J]. Journal of Shandong University(Natural Science), 2019, 54(8):90-96.
[12] LAINE I, YANG Chungchun. Value distribution of difference polynomials[J]. Proc Japan Acad, Ser A, Math Sci, 2007, 83(8):148-151.
[13] QI Xiaoguang, YANG Lianzhong, LIU Kai. Uniqueness and periodicity of meromorphic functions concerning the difference operator[J]. Computers and Mathematics with Applications, 2010, 60(6):1739-1746.
[14] 龙见仁, 秦大专. 关于微分差分多项式零点分布的几个结果[J]. 江西师范大学学报(自然科学版), 2020, 44(5):510-514. LONG Jianren, QIN Dazhuan. Some results of zero distribution for differential-difference polynomials[J]. Journal of Jiangxi Normal University(Natural Science), 2020, 44(5):510-514.
[15] CHEN Zongxuan, HUANG Zhibo, ZHENG Xiumin. On properties of difference polynomials[J]. Acta Mathematica Scientia, Ser B, 2011, 31(2):627-633.
[16] HUANG Zhibo, CHEN Zongxuan. A Clunie lemma for difference and q-difference polynomials[J]. Bulletin of the Australian Mathematical Society, 2010, 81(1):23-32.
[17] ZHANG Jilong. Value distribution and shared sets of differences of meromorphic functions[J]. Journal of Mathematical Analysis and Applications, 2010, 367(2):401-408.
[18] LIU Kai, LIU Xinling, CAO Tingbin. Some results on zeros and uniqueness of difference-differential polynomials[J]. Applied Mathematics-A Journal of Chinese Universities Series B, 2012, 27(1):94-104.
[19] XU Junfeng, ZHANG Xiaobin. The zeros of q-difference polynomials of meromorphic functions[J]. Advances in Difference Equations 2012, 2012: 200.
[20] ZHENG Xiumin, XU Hongyan. On value distribution and uniqueness of meromorphic function with finite logarithmic order concerning its derivative and q-shift difference[J]. Journal of Inequalities and Applications 2014, 2014: 295.
[21] LAHIRI I, SARKAR A. Uniqueness of a meromorphic function and its derivative[J]. Journal of Inequalities in Pure and Applied Mathematics, 2004, 5(1):20.
[22] MATHAI M M, MANJALAPUR V V. Uniqueness of differential q-shift difference polynomials of entire functions[J/OL]. The Journal of Analysis, 2021. https://doi:org/10.1007/S41478-020-00299-X.
[1] 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21.
[2] 李朝倩. 一类非线性四阶边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 93-100.
[3] 杨丽娟. 一类非线性四阶常微分方程边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 101-108.
[4] 李效敏,吴聪聪. 亚纯函数与L-函数分担四个有限值的唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 1-8.
[5] 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54-61.
[6] 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90.
[7] 张伟杰,王新利,王汉杰. 亚纯函数微分多项式IM分担值的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 90-96.
[8] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[9] 王凌霜,黄志刚. 非线性微分方程解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 106-114.
[10] 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96.
[11] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[12] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[13] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[14] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[15] 扈培础,吴爱迪. 关于L-函数的问题[J]. 山东大学学报(理学版), 2016, 51(6): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!