您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 33-38.doi: 10.6040/j.issn.1671-9352.0.2022.285

• • 上一篇    下一篇

强V W -Gorenstein复形

贾宏慧,赵仁育   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2023-03-02
  • 作者简介:贾宏慧(1997— ),女,硕士研究生,研究方向为环的同调理论. E-mail:2977280442@qq.com*通信作者简介:赵仁育(1977—),男,教授,研究方向为环的同调理论. E-mail:zhaory@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11861055,12061061)

Strongly V W -Gorenstein complexes

JIA Hong-hui, ZHAO Ren-yu   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2023-03-02

摘要: 设V,W是两个R-模类。引入了强V W -Gorenstein复形的概念,证明了如果V,W关于扩张和有限直和封闭,并且V ⊥V,W ⊥W,V ⊥W,V,W ⊆G(V W ),那么复形M是强V W -Gorenstein的当且仅当M是正合复形,并且对任意的n∈Z,Zn(M)是V W -Gorenstein模。此外,我们得到了一些有意义的推论,这些结果统一和推广了一些已知的结论。

关键词: V W -Gorenstein模, 强V W -Gorenstein复形, W -复形, CE W -复形

Abstract: Let V, W be two classes of R-modules. A notion of strongly V W -Gorenstein complexes is introduced. It is shown that if V, W are closed under extensions and finite direct sums, V ⊥V, W ⊥W, V ⊥W and V,W ⊆G(V W ), a complex M is strongly V W -Gorenstein if and only if M is exact and Zn(M)is V W -Gorenstein for all n∈Z. In addition, some interesting corollaries are obtained, which unify and genelize some known results.

Key words: V W -Gorenstein module, strongly V W -Gorenstein complex, W -complex, CE W -complex

中图分类号: 

  • O153.3
[1] ENOCHEE, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(4):611-633.
[2] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/2/3):167-193.
[3] GENG Yuxian, DING Nanqing. W -Gorenstein modules[J]. Journal of Algebra, 2011, 325:132-146.
[4] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Stability of Gorenstein categories [J]. Journal of the London Mathematical Society-Second: Series, 2008, 77(2):481-502.
[5] HOLM H, JØRGENSEEN P. Semi-dualizing modules and related Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2006, 205(2):423-445.
[6] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. Journal of Commutative Algebra, 2010, 2(1):111-137.
[7] ZHAO Guoqiang, SUN Juxiang. V W -Gorenstein categories[J]. Turkish Journal of Mathematics, 2016, 40(2):365-375.
[8] ZHAO Renyu, REN Wei. V W -Gorenstein complexes[J]. Turkish Journal of Mathematics, 2017, 41:537-547.
[9] ENOCHS E E, GARCA ROZAS J R. Gorenstein injective and projective complexes[J]. Communications in Algebra, 1998, 26(5):1657-1674.
[10] YANG Xiaoyan, LIU Zhongkui. Gorenstein projective, injective and flat complexes[J]. Communications in Algebra, 2011, 39:1705-1721.
[11] LIANG Li, DING Nanqing, YANG Gang. Some remarks on projective generators and injective cogenerators[J]. Acta Mathematical Sinica: English Seriesa, 2014, 30:2063-2078.
[12] YANG Chunhua, LIANG Li. Gorenstein injective and projective complexes with respect to a semidualizing module[J]. Communications in Algebra, 2012, 40:3352-3364.
[13] LU Bo, LIU Zhongkui. A note on Gorenstein projective complexes[J]. Turkish Journal of Mathematics, 2016, 40:235-243.
[14] LU Bo. Strongly W -Gorenstein complexes[J]. Journal of Mathematical Research with Applications, 2018, 38(5):449-457.
[15] GILLESPIE J. The flat model structure on Ch(R)[J]. Transactions of the American Mathematical Society, 2004, 356:3369-3390.
[16] ENOCHS E E. Cartan-Eilenberg complexes and resolutions[J]. Journal of Algebra, 2011, 342:16-39.
[17] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Journal of Mathematics of Kyoto University, 2007, 47(4):781-808.
[18] LU Bo, LIU Zhongkui. A note on Cartan-Eilenberg Gorenstein categories[J]. Kodai Mathematical Journal, 2015, 102(1):209-227.
[1] 尹俊琦, 杨刚. Gorenstein DG-内射复形[J]. 《山东大学学报(理学版)》, 2022, 57(10): 28-33.
[2] 郭慧瑛,张翠萍. Ext-强Ding投射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 31-36.
[3] 赵跳,章超. 自内射Nakayama代数的q-Cartan矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(10): 46-51.
[4] 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45.
[5] 张翠萍,刘雅娟. 强Gorenstein C-内射模和强Gorenstein C-平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 24-30.
[6] 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107.
[7] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26.
[8] 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15.
[9] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8.
[10] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[11] 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24.
[12] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[13] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[14] 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23.
[15] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!