《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 33-38.doi: 10.6040/j.issn.1671-9352.0.2022.285
贾宏慧,赵仁育
JIA Hong-hui, ZHAO Ren-yu
摘要: 设V,W是两个R-模类。引入了强V W -Gorenstein复形的概念,证明了如果V,W关于扩张和有限直和封闭,并且V ⊥V,W ⊥W,V ⊥W,V,W ⊆G(V W ),那么复形M是强V W -Gorenstein的当且仅当M是正合复形,并且对任意的n∈Z,Zn(M)是V W -Gorenstein模。此外,我们得到了一些有意义的推论,这些结果统一和推广了一些已知的结论。
中图分类号:
[1] ENOCHEE, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(4):611-633. [2] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/2/3):167-193. [3] GENG Yuxian, DING Nanqing. W -Gorenstein modules[J]. Journal of Algebra, 2011, 325:132-146. [4] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Stability of Gorenstein categories [J]. Journal of the London Mathematical Society-Second: Series, 2008, 77(2):481-502. [5] HOLM H, JØRGENSEEN P. Semi-dualizing modules and related Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2006, 205(2):423-445. [6] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. Journal of Commutative Algebra, 2010, 2(1):111-137. [7] ZHAO Guoqiang, SUN Juxiang. V W -Gorenstein categories[J]. Turkish Journal of Mathematics, 2016, 40(2):365-375. [8] ZHAO Renyu, REN Wei. V W -Gorenstein complexes[J]. Turkish Journal of Mathematics, 2017, 41:537-547. [9] ENOCHS E E, GARCA ROZAS J R. Gorenstein injective and projective complexes[J]. Communications in Algebra, 1998, 26(5):1657-1674. [10] YANG Xiaoyan, LIU Zhongkui. Gorenstein projective, injective and flat complexes[J]. Communications in Algebra, 2011, 39:1705-1721. [11] LIANG Li, DING Nanqing, YANG Gang. Some remarks on projective generators and injective cogenerators[J]. Acta Mathematical Sinica: English Seriesa, 2014, 30:2063-2078. [12] YANG Chunhua, LIANG Li. Gorenstein injective and projective complexes with respect to a semidualizing module[J]. Communications in Algebra, 2012, 40:3352-3364. [13] LU Bo, LIU Zhongkui. A note on Gorenstein projective complexes[J]. Turkish Journal of Mathematics, 2016, 40:235-243. [14] LU Bo. Strongly W -Gorenstein complexes[J]. Journal of Mathematical Research with Applications, 2018, 38(5):449-457. [15] GILLESPIE J. The flat model structure on Ch(R)[J]. Transactions of the American Mathematical Society, 2004, 356:3369-3390. [16] ENOCHS E E. Cartan-Eilenberg complexes and resolutions[J]. Journal of Algebra, 2011, 342:16-39. [17] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Journal of Mathematics of Kyoto University, 2007, 47(4):781-808. [18] LU Bo, LIU Zhongkui. A note on Cartan-Eilenberg Gorenstein categories[J]. Kodai Mathematical Journal, 2015, 102(1):209-227. |
[1] | 尹俊琦, 杨刚. Gorenstein DG-内射复形[J]. 《山东大学学报(理学版)》, 2022, 57(10): 28-33. |
[2] | 郭慧瑛,张翠萍. Ext-强Ding投射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 31-36. |
[3] | 赵跳,章超. 自内射Nakayama代数的q-Cartan矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(10): 46-51. |
[4] | 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45. |
[5] | 张翠萍,刘雅娟. 强Gorenstein C-内射模和强Gorenstein C-平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 24-30. |
[6] | 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107. |
[7] | 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26. |
[8] | 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15. |
[9] | 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8. |
[10] | 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31. |
[11] | 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24. |
[12] | 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15. |
[13] | 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35. |
[14] | 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23. |
[15] | 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17. |
|