您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 62-72.doi: 10.6040/j.issn.1671-9352.0.2022.624

•   • 上一篇    下一篇

广义加权变指标Morrey空间上双线性θ-型Calderón-Zygmund算子

芮俪(),逯光辉*(),李雪梅   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2022-11-28 出版日期:2024-04-20 发布日期:2024-04-12
  • 通讯作者: 逯光辉 E-mail:r495560215@163.com;luguanghui@nwnu.edu.cn
  • 作者简介:芮俪(1997—),女,硕士研究生,研究方向为调和分析. E-mail:r495560215@163.com
  • 基金资助:
    国家自然科学基金资助项目(12201500);甘肃省青年科技基金计划资助项目(22JR5RA173);甘肃省优秀研究生“创新之星”资助项目(2022CXZX-327)

Bilinear θ-type Calderón-Zygmund operators on generalized weighted variable exponent Morrey spaces

Li RUI(),Guanghui LU*(),Xuemei LI   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-11-28 Online:2024-04-20 Published:2024-04-12
  • Contact: Guanghui LU E-mail:r495560215@163.com;luguanghui@nwnu.edu.cn

摘要:

利用双线性θ-型Calderón-Zygmund算子在变指标Lebesgue空间的有界性以及函数空间控制关系,以及在假设函数u满足某些特定的条件下,证明双线性θ-型Calderón-Zygmund算子从乘积广义加权变指标Morrey空间到广义加权变指标Morrey空间上有界;同时也证明由双线性θ-型Calderón-Zygmund算子和b1, b2 ∈ BMO(Rn)生成的交换子在广义加权变指标Morrey空间上是有界的。

关键词: Morrey型空间, 加权, 变指标, Calderón-Zygmund算子, 交换子, BMO空间

Abstract:

Via the boundedness of the bilinear θ-type Calderón-Zygmund operators in the variable index Lebesgue space and the control relations in the function spaces, and assuming that the functions u meet certain conditions, the authors prove that the bilinear θ-type Calderón-Zygmund operators are bounded from product generalized weighted variable exponent Morrey spaces to generalized weighted variable exponent Morrey spaces. Furthermore, the authors also prove that the commutators generated by the bilinear θ-type Calderón-Zygmund operators and b1, b2 ∈ BMO(Rn) are bounded on generalized weighted variable exponent Morrey spaces.

Key words: Morrey type space, weighted, variable exponent, Calderón-Zygmund operator, commutator, BMO space

中图分类号: 

  • O174.2
1 LIN Yan . Strongly singular Calderón-Zygmund operator and commutator on Morrey type spaces[J]. Acta Math Sin, 2007, 23 (11): 2097- 2110.
doi: 10.1007/s10114-007-0974-0
2 LIN Yan , LU Shanzhen . Strongly singular Calderón-Zygmund operators and their commutators[J]. Jordan J Math Stat, 2008, 1 (1): 37- 59.
3 YABUTA K . Generalizations of Calderón-Zygmund operators[J]. Studia Math, 1985, 82 (1): 17- 31.
doi: 10.4064/sm-82-1-17-31
4 LU Guozhen, ZHANG Pu. Multilinear Calderón-Zygmund operators with kernels of Dini's type and applications[J/OL]. Nonlinear Anal, 2014[2022-11-28]. https://doi.org/10.1016/j.na.2014.05.005.
5 XIE Rulong , SHU Lisheng . On multilinear commutators of θ-type Calderón-Zygmund operators[J]. Anal Theory Appl, 2008, 24 (3): 260- 270.
doi: 10.1007/s10496-008-0260-8
6 LI Kangwei , SUN Wenchang . Weak and strong type weighted estimates for multilinear Calderón-Zygmund operators[J]. Adv Math, 2014, 254, 736- 771.
doi: 10.1016/j.aim.2013.12.027
7 GRAFAKOS L , KALTON N . Multilinear Calderón-Zygmund operators in Hardy spaces[J]. Collect Math, 2001, 52 (2): 169- 179.
8 ISMAYILOVA A . Calderón-Zygmund operators with kernels of Dini's type and their multilinear commutators on generalized Morrey spaces[J]. Trans Natl Acad Sci Azerb Ser Phys Tech Math Sci, 2021, 41 (4): 1- 12.
9 LU Guanghui, TAO Shuangping. Bilinear θ-type generalized fractional integral operator and its commutator on some non-homogeneous spaces[J/OL]. Bull Math Sci, 2022[2022-11-28]. https://doi.org/10.1016/j.bulsci.2021.103094.
10 LU Guanghui . Commutators of bilinear θ-type Calderón-Zygmund operators on Morrey spaces over non-homogeneous spaces[J]. Anal Math, 2020, 46 (1): 97- 118.
doi: 10.1007/s10476-020-0020-3
11 LU Guanghui . Bilinear θ-type Calderón-Zygmund operator and its commutator on nonhomogeneous weighted Morrey spaces[J]. Rev R Acad Cienc Exactas Fis Nat Ser A Mat RACSAM, 2021, 115 (1): 1- 15.
doi: 10.1007/s13398-020-00944-x
12 MORREY C . On the solutions of quasi-linear elliptic partial differential equations[J]. Trans Amer Math Soc, 1938, 43 (1): 126- 166.
doi: 10.1090/S0002-9947-1938-1501936-8
13 MIZUHARA T. Boundedness of some classical operators on generalized Morrey spaces[J/OL]. Harmonic Analysis (Sendai, 1990), 1991[2022-11-28]. https://doi.org/10.1007/978-4-431-68168-7_16.
14 KOMORI Y , SHIRAI S . Weighted Morrey spaces and a singular integral operator[J]. Math Nachr, 2009, 282 (2): 219- 231.
doi: 10.1002/mana.200610733
15 GULIYEV V . Generalized weighted Morrey spaces and higher order commutators of sublinear operators[J]. Eurasian Math J, 2012, 3 (3): 33- 61.
16 GULIYEV V , HASANOV J , BADALOV X . Maximal and singular integral operators and their commutators on generalized weighted Morrey spaces with variable exponent[J]. Math Inequal Appl, 2018, 21 (1): 41- 61.
17 WANG Liwei . Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent[J]. Bul Korean Math Soc, 2020, 57 (6): 1427- 1499.
18 HO K P . The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J]. Math Inequal Appl, 2013, 16 (2): 363- 373.
19 ZHU Yueping , TANG Yan , JIANG Lixing . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents[J]. AIMS Mathematics, 2021, 6 (10): 11246- 11262.
doi: 10.3934/math.2021652
20 CRUZ-URIBE D , FIORENZA A , NEUGEBAUER C . The maximal function on variable spaces[J]. Ann Acad Sci Fenn Math, 2004, 29 (1): 247- 249.
21 DIENING L , HARJULEHTO P , HASTO P , et al. Lebesgue and Sobolev spaces with variable exponents[M]. Berlin: Springer-Verlag, 2011.
22 IZUKI M , NOI T . Boundedness of fractional integral on weighted Herz spaces with variable exponent[J]. Inequal Appl, 2016, 2016 (1): 1- 15.
doi: 10.1186/s13660-015-0952-5
23 KOPALIANI T . Infimal convolution and Muckenhoupt ondition in variable paces[J]. Arch Math, 2007, 89 (2): 185- 192.
doi: 10.1007/s00013-007-2035-4
24 TAO Xiangxing , YU Xiao , ZHANG Huihui . Multilinear Calderón-Zygmund operators on variable exponent Morrey spaces over domains[J]. Appl Math J Chinese Univ Ser B, 2011, 26 (2): 187- 197.
doi: 10.1007/s11766-011-2704-8
25 CRUZ-URIBE D , WANG L D . Variable Hardy spaces[J]. Indiana University Mathematics Journal, 2020, 63 (2): 447- 493.
26 KARAPETYANTSAN , RAFEIRO H , SAMKO S G . On singular operators in vanishing generalized variable exponent morrey spaces and applications to Bergman-type Spaces[J]. Math Notes, 2019, 106 (5/6): 727- 739.
27 IZUKI M . Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent[J]. Rend Circ Malem Palermo, 2010, 59 (3): 461- 472.
doi: 10.1007/s12215-010-0034-y
28 PEREZ C, TORRES R. Sharp maximal function estimates for multilinear singular integrals[J/OL]. Contemp Math, 2003[2022-11-28]. https://doi.org/10.1090/conm/320/05615.
29 HO K P . Singular integral operators John-Nirenberg inequalities and Triebel-Lizorkin type spaces on weighted Lebesgue spaces with variable exponents[J]. Rev Un Mat Argentina, 2016, 57 (1): 85- 101.
30 HUANG Aiwu , XU Jingshi . Multilinear singular integrals and commutators in variable exponent Lebesgue spaces[J]. Appl Math J Chinese Univ Ser B, 2010, 25 (1): 69- 77.
doi: 10.1007/s11766-010-2167-3
[1] 王晨,许德刚,达虹鞠,唐智和,栾辉,范海浩. 基于DEM与“宽带结构”联合优化的XCH4遥感反演算法研究[J]. 《山东大学学报(理学版)》, 2024, 59(4): 127-134.
[2] 郑宇洁,刘爱芳. 局部交换子及其酉系统中的r-重游荡算子[J]. 《山东大学学报(理学版)》, 2024, 59(2): 120-126.
[3] 冯雪,耿生玲,李永明. 加权犹豫模糊偏好关系及其在群体决策中的应用[J]. 《山东大学学报(理学版)》, 2023, 58(3): 39-47.
[4] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[5] 韩露,郭鑫垚,魏巍,梁吉业. 基于约束分层加权的多度量学习算法[J]. 《山东大学学报(理学版)》, 2022, 57(4): 12-20.
[6] 史鹏伟,陶双平. 极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子[J]. 《山东大学学报(理学版)》, 2022, 57(12): 45-54.
[7] 韦营营,张婧. Marcinkiewicz积分交换子在变指标Herz Triebel-Lizorkin空间的有界性[J]. 《山东大学学报(理学版)》, 2022, 57(12): 55-63.
[8] 辛银萍. 参数型Marcinkiewicz积分交换子在变指数Herz-Morrey空间的加权有界性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 66-75.
[9] 温柳英,袁伟. 多标签符号型属性值划分的聚类方法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 58-69.
[10] 王敏,方小珍,瞿萌,束立生. 多线性Hardy-Littlewood极大算子交换子的有界性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 16-22.
[11] 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75.
[12] 辛银萍,陶双平. 带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版), 2018, 53(6): 38-43.
[13] 陶双平,高荣. 多线性分数次积分和极大算子在Morrey空间上的加权估计[J]. 山东大学学报(理学版), 2018, 53(6): 30-37.
[14] 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50.
[15] 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[2] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[3] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1 -6 .
[4] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[5] 王 瑶,刘 建,王仁卿,* . 阿利效应及其对生物入侵和自然保护中小种群管理的启示[J]. J4, 2007, 42(1): 76 -82 .
[6] 张丽,许玉铭 . σ1-空间及其性质[J]. J4, 2006, 41(5): 30 -32 .
[7] 房 用,王月海,鲍玉海,李申安,张兴丽 . 不同品种茶树的蒸腾特性及其抗逆性能的研究[J]. J4, 2006, 41(1): 145 -148 .
[8] . 水相中粒径可控银纳米粒子的电化学制备[J]. J4, 2009, 44(7): 13 -17 .
[9] 王刚,许信顺*. 一种新的基于多示例学习的场景分类方法[J]. J4, 2010, 45(7): 108 -113 .
[10] 陆玮洁,主沉浮,宋 翠,杨艳丽 . 中药郁金中无机离子的毛细管电泳法测定[J]. J4, 2007, 42(7): 13 -18 .