《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 1-11.doi: 10.6040/j.issn.1671-9352.0.2023.295
• 金融数学 • 下一篇
张立东1,吴水苗2,田静禾2,董懿琳2,孟祥波1*
ZHANG Lidong1, WU Shuimiao2, TIAN Jinghe2, DONG Yilin2, MENG Xiangbo1*
摘要: 假设标的资产价格服从均值回复过程,运用矩匹配技术,研究Hull-White模型下商期权定价问题。相比于使用蒙特卡罗模拟方法,对Hull-White模型采用矩匹配的估值方法,可以在确保精度的基础上显著提升商期权定价的稳定性和效率。最后,在中国股票市场上,选取2个行业龙头公司的股票作为研究对象进行实例应用,评估期权定价模型在金融市场的适用性。结果显示,本模型与蒙特卡洛模拟方法的估计结果差异极小,但前者用时显著缩短。
中图分类号:
[1] 王波,朱顺伟,邓亚东,等. 4/2随机波动率模型下的期权定价[J]. 系统管理学报, 2020, 29(1):192-198. WANG Bo, ZHU Shunwei, DENG Yadong, et al. Options on S& P 500 index by fundamental transform approach: 4/2 stochastic volatility model[J].Journal of System Management, 2020, 29(1):192-198. [2] SHI Chao. Asymptotic analysis of the Heston model and its statistical and financial applications[J]. Applied Stochastic Models in Business and Industry, 2022, 38(6):1049-1060. [3] SHI Z, ALFONZETTI S. Solving parametric volterra integral equation from distributed-order rough heston model and option pricing[J]. Mathematical Problems in Engineering, 2022, 2022:1979003. [4] ZHANG Qi, SONG Haiming, HAO Yongle. Semi-implicit FEM for the valuation of American options under the Heston model[J]. Computational and Applied Mathematics, 2022, 41(2):73. [5] HULL J C, WHITE A. The pricing of options on assets with stochastic volatilities[J]. The Journal of Finance, 1987, 42(2):281-300. [6] HULL J. An analysis of the bias in option pricing caused by a stochastic volatility[J]. Advances in Futures and Options Research, 1988, 3:29-61. [7] LI Xun, WU Zhenyu. On an approximation method for pricing a high-dimensional basket option on assets with mean-reverting prices[J]. Computers & Operations Research, 2008, 35(1):76-89. [8] YU Bo, ZHU Hongmei, WU Ping. The closed-form approximation to price basket options under stochastic interest rate[J]. Finance Research Letters, 2022, 46:102434. [9] WU Ping, LIN Hui. Pricing of basket options by conditioning and moment matching[J]. The Journal of Derivatives, 2020, 28(2):80-87. [10] GAO Zhichao, WANG Xiaosheng, HA Mingyu. Multi-asset option pricing in an uncertain financial market with jump risk[J]. Journal of Uncertainty Analysis and Applications, 2016, 4(1):1. [11] 李敬楠,刘会利. 随机利率下基于O-U过程的商期权定价[J]. 吉首大学学报(自然科学版),2022,43(2):23-30. LI Jingnan, LIU Huili. Quotientoption pricing based on O-U process with stochastic interest rate[J]. Journal of Jishou University(Natural Sciences Edition), 2022, 43(2):23-30. [12] ÖZSOY A U. Pricing and hedging of quotient options in(·overI)stanbul stock exchange[D]. Ankara: Middle East Technical University, 2016. [13] BOS L P, WARE A F, PAVLOV B S. On a semi-spectral method for pricing an option on a mean-reverting asset[J]. Quantitative Finance, 2002, 2(5):337-345. [14] HULL J C, WHITE A D. Numerical procedures for implementing term structure models I: single-factor models[J]. The Journal of Derivatives, 1994, 2(1):7-16. [15] HULL J, WHITE A. Numerical procedures for implementing term structure models II: two-factor models[J]. Journal of Derivatives, 1994, 2(2):37-48. [16] VASICEK O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2): 177-188. [17] COX J C, INGERSOLL J E, ROSS S A. A re-examination of traditional hypotheses about the term structure of interest rates[J]. The Journal of Finance, 1981, 36(4):769-799. [18] COX J C, INGERSOLL J E, ROSS S A. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2): 385. [19] ZHU Y L, WU X N, CHERN I L. Derivative securities and difference methods[M]. New York: Springer, 2004. [20] SEYDEL R. Tools for computational finance[M]. 3rd ed. Berlin: Springer, 2006. [21] BROADIE M, GLASSERMAN P. A stochastic mesh method for pricing high-dimensional American options[J]. Journal of Computational Finance, 2004, 7(4):35-72. |
[1] | 吕平涛,王才士,赵积君. 基于Hadamard游荡的一类具有相同特征值和连续谱的两态量子游荡[J]. 《山东大学学报(理学版)》, 2024, 59(8): 84-93. |
[2] | 高玉峰,冯德成. 条件弱鞅和条件N-弱鞅的上(下)穿不等式[J]. 《山东大学学报(理学版)》, 2024, 59(6): 122-126. |
[3] | 张亚茹,夏莉,张典秋. 混合双分数布朗运动下的永久美式回望期权定价[J]. 《山东大学学报(理学版)》, 2024, 59(4): 98-107. |
[4] | 严晓东. 策略极限理论与策略统计学习[J]. 《山东大学学报(理学版)》, 2024, 59(1): 1-10, 45. |
[5] | 徐诚浩,王开永. 二维离散时间风险模型的破产概率[J]. 《山东大学学报(理学版)》, 2023, 58(11): 27-34, 52. |
[6] | 杨鹏,张晓燕. 基于Stackelberg博弈的最优再保险合同设计[J]. 《山东大学学报(理学版)》, 2023, 58(11): 1-14,26. |
[7] | 张诗苗,吕艳. 带Lévy噪声的Lotka-Volterra竞争模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(10): 24-31. |
[8] | 丁佳鑫,郭永峰,米丽娜. 高斯噪声和Lévy噪声激励下欠阻尼周期势系统的相变行为[J]. 《山东大学学报(理学版)》, 2023, 58(8): 111-117. |
[9] | 高琦,戴洪帅,武艳华. 基于MPEWMA控制图的串联排队网络的监测与控制[J]. 《山东大学学报(理学版)》, 2023, 58(8): 104-110, 117. |
[10] | 陈叶君,丁惠生. 带有Stepanov概周期系数的无穷维随机微分方程的θ-概周期解[J]. 《山东大学学报(理学版)》, 2023, 58(6): 113-126. |
[11] | 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74. |
[12] | 陈昊君,郑莹,马明,边莉娜,刘华. 自激滤过泊松过程的协方差[J]. 《山东大学学报(理学版)》, 2018, 53(12): 75-79. |
[13] | 周玉兰,李转,李晓慧. 连续时间Guichardet-Fock空间中修正随机梯度算子的性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 62-68. |
[14] | 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54. |
[15] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
|