您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 1-11.doi: 10.6040/j.issn.1671-9352.0.2023.295

• 金融数学 •    下一篇

基于矩匹配的Hull-White模型下商期权定价

张立东1,吴水苗2,田静禾2,董懿琳2,孟祥波1*   

  1. 1.天津科技大学理学院, 天津 300457;2.天津科技大学经济与管理学院, 天津 300457
  • 发布日期:2025-03-10
  • 通讯作者: 孟祥波(1981— ),男,副教授,博士,研究方向为金融数学、随机最优控制. E-mail:mengxb@tust.edu.cn
  • 作者简介:张立东(1979— ),男,教授,博士,研究方向为金融工程与风险管理. E-mail:zhanglidong1999@126.com*通信作者:孟祥波(1981— ),男,副教授,博士,研究方向为金融数学、随机最优控制. E-mail:mengxb@tust.edu.cn
  • 基金资助:
    教育部人文社会科学研究一般项目(19YJCZH251);天津市哲学社会科学规划项目(TJYJ21-009)

Pricing quotient options by the moment matching approach under the Hull-White model

ZHANG Lidong1, WU Shuimiao2, TIAN Jinghe2, DONG Yilin2, MENG Xiangbo1*   

  1. 1. School of Science, Tianjin University of Science and Technology, Tianjin 300457, China;
    2. College of Economics and Management, Tianjin University of Science and Technology, Tianjin 300457, China
  • Published:2025-03-10

摘要: 假设标的资产价格服从均值回复过程,运用矩匹配技术,研究Hull-White模型下商期权定价问题。相比于使用蒙特卡罗模拟方法,对Hull-White模型采用矩匹配的估值方法,可以在确保精度的基础上显著提升商期权定价的稳定性和效率。最后,在中国股票市场上,选取2个行业龙头公司的股票作为研究对象进行实例应用,评估期权定价模型在金融市场的适用性。结果显示,本模型与蒙特卡洛模拟方法的估计结果差异极小,但前者用时显著缩短。

关键词: 商期权, 均值回复过程, Hull-White模型, 矩匹配

Abstract: Under the assumption that the underlying asset price follows the mean reversion process, the quotient option pricing problem under the Hull-White model is studied by using the moment matching technique. Compared with the Monte Carlo simulation method, the stability and efficiency of quotient option pricing can be significantly improved by the proposed valuation method, while maintaining accuracy. Furthermore, in the Chinese stock market, the stocks of two leading companies are chosen as research objects for evaluating the applicability of the option pricing model in the financial market. The results indicate that the estimation results of this model and the Monte Carlo simulation method exhibit minimal differences, althougth the former requires significantly less time.

Key words: quotient option, mean-reverting process, Hull-White model, moment matching

中图分类号: 

  • O211
[1] 王波,朱顺伟,邓亚东,等. 4/2随机波动率模型下的期权定价[J]. 系统管理学报, 2020, 29(1):192-198. WANG Bo, ZHU Shunwei, DENG Yadong, et al. Options on S& P 500 index by fundamental transform approach: 4/2 stochastic volatility model[J].Journal of System Management, 2020, 29(1):192-198.
[2] SHI Chao. Asymptotic analysis of the Heston model and its statistical and financial applications[J]. Applied Stochastic Models in Business and Industry, 2022, 38(6):1049-1060.
[3] SHI Z, ALFONZETTI S. Solving parametric volterra integral equation from distributed-order rough heston model and option pricing[J]. Mathematical Problems in Engineering, 2022, 2022:1979003.
[4] ZHANG Qi, SONG Haiming, HAO Yongle. Semi-implicit FEM for the valuation of American options under the Heston model[J]. Computational and Applied Mathematics, 2022, 41(2):73.
[5] HULL J C, WHITE A. The pricing of options on assets with stochastic volatilities[J]. The Journal of Finance, 1987, 42(2):281-300.
[6] HULL J. An analysis of the bias in option pricing caused by a stochastic volatility[J]. Advances in Futures and Options Research, 1988, 3:29-61.
[7] LI Xun, WU Zhenyu. On an approximation method for pricing a high-dimensional basket option on assets with mean-reverting prices[J]. Computers & Operations Research, 2008, 35(1):76-89.
[8] YU Bo, ZHU Hongmei, WU Ping. The closed-form approximation to price basket options under stochastic interest rate[J]. Finance Research Letters, 2022, 46:102434.
[9] WU Ping, LIN Hui. Pricing of basket options by conditioning and moment matching[J]. The Journal of Derivatives, 2020, 28(2):80-87.
[10] GAO Zhichao, WANG Xiaosheng, HA Mingyu. Multi-asset option pricing in an uncertain financial market with jump risk[J]. Journal of Uncertainty Analysis and Applications, 2016, 4(1):1.
[11] 李敬楠,刘会利. 随机利率下基于O-U过程的商期权定价[J]. 吉首大学学报(自然科学版),2022,43(2):23-30. LI Jingnan, LIU Huili. Quotientoption pricing based on O-U process with stochastic interest rate[J]. Journal of Jishou University(Natural Sciences Edition), 2022, 43(2):23-30.
[12] ÖZSOY A U. Pricing and hedging of quotient options in(·overI)stanbul stock exchange[D]. Ankara: Middle East Technical University, 2016.
[13] BOS L P, WARE A F, PAVLOV B S. On a semi-spectral method for pricing an option on a mean-reverting asset[J]. Quantitative Finance, 2002, 2(5):337-345.
[14] HULL J C, WHITE A D. Numerical procedures for implementing term structure models I: single-factor models[J]. The Journal of Derivatives, 1994, 2(1):7-16.
[15] HULL J, WHITE A. Numerical procedures for implementing term structure models II: two-factor models[J]. Journal of Derivatives, 1994, 2(2):37-48.
[16] VASICEK O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2): 177-188.
[17] COX J C, INGERSOLL J E, ROSS S A. A re-examination of traditional hypotheses about the term structure of interest rates[J]. The Journal of Finance, 1981, 36(4):769-799.
[18] COX J C, INGERSOLL J E, ROSS S A. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2): 385.
[19] ZHU Y L, WU X N, CHERN I L. Derivative securities and difference methods[M]. New York: Springer, 2004.
[20] SEYDEL R. Tools for computational finance[M]. 3rd ed. Berlin: Springer, 2006.
[21] BROADIE M, GLASSERMAN P. A stochastic mesh method for pricing high-dimensional American options[J]. Journal of Computational Finance, 2004, 7(4):35-72.
[1] 吕平涛,王才士,赵积君. 基于Hadamard游荡的一类具有相同特征值和连续谱的两态量子游荡[J]. 《山东大学学报(理学版)》, 2024, 59(8): 84-93.
[2] 高玉峰,冯德成. 条件弱鞅和条件N-弱鞅的上(下)穿不等式[J]. 《山东大学学报(理学版)》, 2024, 59(6): 122-126.
[3] 张亚茹,夏莉,张典秋. 混合双分数布朗运动下的永久美式回望期权定价[J]. 《山东大学学报(理学版)》, 2024, 59(4): 98-107.
[4] 严晓东. 策略极限理论与策略统计学习[J]. 《山东大学学报(理学版)》, 2024, 59(1): 1-10, 45.
[5] 徐诚浩,王开永. 二维离散时间风险模型的破产概率[J]. 《山东大学学报(理学版)》, 2023, 58(11): 27-34, 52.
[6] 杨鹏,张晓燕. 基于Stackelberg博弈的最优再保险合同设计[J]. 《山东大学学报(理学版)》, 2023, 58(11): 1-14,26.
[7] 张诗苗,吕艳. 带Lévy噪声的Lotka-Volterra竞争模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(10): 24-31.
[8] 丁佳鑫,郭永峰,米丽娜. 高斯噪声和Lévy噪声激励下欠阻尼周期势系统的相变行为[J]. 《山东大学学报(理学版)》, 2023, 58(8): 111-117.
[9] 高琦,戴洪帅,武艳华. 基于MPEWMA控制图的串联排队网络的监测与控制[J]. 《山东大学学报(理学版)》, 2023, 58(8): 104-110, 117.
[10] 陈叶君,丁惠生. 带有Stepanov概周期系数的无穷维随机微分方程的θ-概周期解[J]. 《山东大学学报(理学版)》, 2023, 58(6): 113-126.
[11] 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74.
[12] 陈昊君,郑莹,马明,边莉娜,刘华. 自激滤过泊松过程的协方差[J]. 《山东大学学报(理学版)》, 2018, 53(12): 75-79.
[13] 周玉兰,李转,李晓慧. 连续时间Guichardet-Fock空间中修正随机梯度算子的性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 62-68.
[14] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[15] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刁科凤,赵 平 . 具有最小连通点对图的C-超图的染色讨论[J]. J4, 2007, 42(2): 56 -58 .
[2] 薛岩波 杨波 陈贞翔. 小波分析在土木工程结构健康监测系统中的应用研究[J]. J4, 2009, 44(9): 28 -31 .
[3] 江雪莲,石洪波*. 产生式与判别式组合分类器学习算法[J]. J4, 2010, 45(7): 7 -12 .
[4] 彭艳芬,李宝宗,刘天宝 . 有机气体麻醉活性的构效关系研究[J]. J4, 2006, 41(5): 148 -150 .
[5] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[6] 刘艳萍,吴群英. 优化权重下高斯序列最大值几乎处处中心极限定理[J]. 山东大学学报(理学版), 2014, 49(05): 50 -53 .
[7] 杜吉祥1,2,余庆1,翟传敏1. 基于稀疏性约束非负矩阵分解的人脸年龄估计方法[J]. J4, 2010, 45(7): 65 -69 .
[8] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[9] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[10] 伍代勇, 张海. 具有Allee效应和时滞的单种群离散模型的稳定性和分支[J]. 山东大学学报(理学版), 2014, 49(07): 88 -94 .