《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 70-78.doi: 10.6040/j.issn.1671-9352.0.2023.553
• • 上一篇
李筱璇,殷晓斌*
LI Xiaoxuan, YIN Xiaobin*
摘要: 若该环中所有元素都表示为一个拟投射元与一个Jacobson根中元素之和(且它们可以交换),称该环是(强)拟J-*-clean环。本文研究了拟J-*-clean环的基本性质以及其与其他*-环的关系,证明R是强拟J-*-clean环当且仅当R是强*-clean环且R/J(R)是强拟J-*-clean环,当且仅当R/J(R)是强拟J-*-clean环,R中投射元是中心的且投射元模J(R)可提升。
中图分类号:
| [1] VAŠ L. *-Clean rings; some clean and almost clean Baer *-rings and von Neumann algebras[J]. Journal of Algebra, 2010, 324(12):3388-3400. [2] CHEN Huanyin. On strongly J-clean rings[J]. Communications in Algebra, 2010, 38(10):3790-3804. [3] TANG Gaohua, SU Huadong, YUAN Pingzhi. Quasi-clean rings and strongly quasi-clean rings[J]. Communications in Contemporary Mathematics, 2023, 25(2):2150079. [4] 王尧,陈蒋欢,任艳丽. 拟J-clean 环[J]. 山东大学学报(理学版),2023,58(6):1-8. WANG Yao, CHEN Jianghuan, REN Yanli. Quasi J-clean rings[J]. Journal of Shandong University(Natural Science), 2023, 58(6):1-8. [5] NICHOLSON W K, ZHOU Y. Clean general rings[J]. Journal of Algebra, 2005, 291(1):297-311. [6] BERBERIAN S K. Baer *-rings[M]. New York: Springer, 1972. [7] CHEN H Y, HARMANCI A, ÖZCAN A C. Strongly J-clean rings with involutions[J]. Contemporary Mathematics, 2014, 609:33-44. [8] CUI Jian, WANG Zhou. A note on strongly *-clean rings[J]. Journal of the Korean Mathematical Society, 2015, 52(4):839-851. [9] CUI Jian, YIN Xiaobin. Some characterizations of *-regular rings[J]. Communications in Algebra, 2017, 45(2):841-848. [10] DANCHEV P V. Rings with Jacobson units[J]. Toyama Mathematical Journal, 2016, 38:61-74. [11] HAN J C, NICHOLSON W K. Extensions of clean rings[J]. Communications in Algebra, 2001, 29(6):2589-2595. [12] CHEN H Y, ABDOLYOUSEFI M S, KOSE H. On medium *-clean rings[J]. Mediterranean Journal of Mathematics, 2019, 16(1):1-13. [13] ATIYAH M F, MACDONALD I G. Introduction to commutative algebra[M]. Boulder: Westview Press, 1969. [14] LI Chunna, ZHOU Yiqiang. On strongly *-clean rings[J]. Journal of Algebra and Its Applications, 2011, 10(6):1363-1370. [15] CHEN Huanyin. Rings related to stable range conditions[M]. Hackensack: World Scientific, 2011. |
| [1] | 王尧, 陈蒋欢, 任艳丽. 强2-幂等J-clean环[J]. 《山东大学学报(理学版)》, 2024, 59(12): 1-10. |
| [2] | 王尧,陈蒋欢,任艳丽. 拟 J-clean环[J]. 《山东大学学报(理学版)》, 2023, 58(6): 1-8. |
| [3] | 王尧,秦兰兰,任艳丽. *-斜多项式环的拟-Baer性[J]. 《山东大学学报(理学版)》, 2023, 58(2): 28-32. |
| [4] | 陈蒋欢,王尧,任艳丽. 2-诣零-clean环[J]. 《山东大学学报(理学版)》, 2022, 57(2): 14-22. |
| [5] | 唐国亮,陈玲巧,狄振兴. 强右极小内射, semiperfect, 右 PF, clean n阶三角矩阵环的等价刻画[J]. 《山东大学学报(理学版)》, 2022, 57(2): 8-13. |
| [6] | 刘松松,吴俊. 强g(x)-J#-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 20-27. |
| [7] | 郑纪文,程智. (强)J-*-三幂等-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 13-19. |
| [8] | 孙晓青,肖燕婷,崔冉冉. 关于环的Q-clean性及Q-clean corner的讨论[J]. 《山东大学学报(理学版)》, 2020, 55(2): 79-83. |
| [9] | 徐莹莹,殷晓斌. JGR-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(2): 84-90. |
| [10] | 陈怡宁,秦龙. 强g(x)-诣零clean环[J]. 《山东大学学报(理学版)》, 2019, 54(6): 41-46. |
| [11] | 高汉鹏,殷晓斌. 强g(x)-J-Clean环[J]. 山东大学学报(理学版), 2017, 52(2): 24-29. |
| [12] | 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24. |
| [13] | 张子珩,储茂权,殷晓斌. GWCN环的若干性质[J]. 山东大学学报(理学版), 2016, 51(12): 10-16. |
| [14] | 王秀兰. 半布尔群环[J]. J4, 2012, 47(10): 18-20. |
| [15] | 张芳娟. 素*-环上的非线性强保*-交换映射[J]. J4, 2011, 46(6): 67-69. |
|
||