您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 70-78.doi: 10.6040/j.issn.1671-9352.0.2023.553

• • 上一篇    

J-*-clean环

李筱璇,殷晓斌*   

  1. 安徽师范大学数学与统计学院, 安徽 芜湖 241002
  • 发布日期:2025-11-11
  • 通讯作者: 殷晓斌(1972— ),男,教授,博士,研究方向为同调代数与环论. E-mail:xbyinzh@ahnu.edu.cn
  • 作者简介:李筱璇(1999— ),女,硕士研究生,研究方向为环论. E-mail:2194286835@qq.com
  • 基金资助:
    安徽省自然科学基金资助项目(2008085MA06);安徽省教育厅重点资助项目(gxyqZD2019009)

Quasi J-*-clean rings

LI Xiaoxuan, YIN Xiaobin*   

  1. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, Anhui, China
  • Published:2025-11-11

摘要: 若该环中所有元素都表示为一个拟投射元与一个Jacobson根中元素之和(且它们可以交换),称该环是(强)拟J-*-clean环。本文研究了拟J-*-clean环的基本性质以及其与其他*-环的关系,证明R是强拟J-*-clean环当且仅当R是强*-clean环且R/J(R)是强拟J-*-clean环,当且仅当R/J(R)是强拟J-*-clean环,R中投射元是中心的且投射元模J(R)可提升。

关键词: clean环, *-环, J-clean环, J-*-clean环, 强拟J-*-clean环

Abstract: A ring is called(strongly)quasi J-*-clean ring if each of its elements is a sum of a quasi-projection and an element of the Jacobson radical(that commute). The basic properties of this ring and some relations with other rings are studied. It is proved that R is a strongly quasi J-*-clean ring if and only if R is a strongly *-clean ring and R/J(R) is a strongly quasi J-*-clean ring if and only if R/J(R) is a strongly quasi J-*-clean ring, every projection of R is central and every projection of R/J(R) is lifted to a projection of R.

Key words: clean ring, *-ring, quasi J-clean ring, quasi J-*-clean ring, strongly quasi J-*-clean ring

中图分类号: 

  • O153.3
[1] VAŠ L. *-Clean rings; some clean and almost clean Baer *-rings and von Neumann algebras[J]. Journal of Algebra, 2010, 324(12):3388-3400.
[2] CHEN Huanyin. On strongly J-clean rings[J]. Communications in Algebra, 2010, 38(10):3790-3804.
[3] TANG Gaohua, SU Huadong, YUAN Pingzhi. Quasi-clean rings and strongly quasi-clean rings[J]. Communications in Contemporary Mathematics, 2023, 25(2):2150079.
[4] 王尧,陈蒋欢,任艳丽. 拟J-clean 环[J]. 山东大学学报(理学版),2023,58(6):1-8. WANG Yao, CHEN Jianghuan, REN Yanli. Quasi J-clean rings[J]. Journal of Shandong University(Natural Science), 2023, 58(6):1-8.
[5] NICHOLSON W K, ZHOU Y. Clean general rings[J]. Journal of Algebra, 2005, 291(1):297-311.
[6] BERBERIAN S K. Baer *-rings[M]. New York: Springer, 1972.
[7] CHEN H Y, HARMANCI A, ÖZCAN A C. Strongly J-clean rings with involutions[J]. Contemporary Mathematics, 2014, 609:33-44.
[8] CUI Jian, WANG Zhou. A note on strongly *-clean rings[J]. Journal of the Korean Mathematical Society, 2015, 52(4):839-851.
[9] CUI Jian, YIN Xiaobin. Some characterizations of *-regular rings[J]. Communications in Algebra, 2017, 45(2):841-848.
[10] DANCHEV P V. Rings with Jacobson units[J]. Toyama Mathematical Journal, 2016, 38:61-74.
[11] HAN J C, NICHOLSON W K. Extensions of clean rings[J]. Communications in Algebra, 2001, 29(6):2589-2595.
[12] CHEN H Y, ABDOLYOUSEFI M S, KOSE H. On medium *-clean rings[J]. Mediterranean Journal of Mathematics, 2019, 16(1):1-13.
[13] ATIYAH M F, MACDONALD I G. Introduction to commutative algebra[M]. Boulder: Westview Press, 1969.
[14] LI Chunna, ZHOU Yiqiang. On strongly *-clean rings[J]. Journal of Algebra and Its Applications, 2011, 10(6):1363-1370.
[15] CHEN Huanyin. Rings related to stable range conditions[M]. Hackensack: World Scientific, 2011.
[1] 王尧, 陈蒋欢, 任艳丽. 强2-幂等J-clean环[J]. 《山东大学学报(理学版)》, 2024, 59(12): 1-10.
[2] 王尧,陈蒋欢,任艳丽. J-clean环[J]. 《山东大学学报(理学版)》, 2023, 58(6): 1-8.
[3] 王尧,秦兰兰,任艳丽. *-斜多项式环的拟-Baer性[J]. 《山东大学学报(理学版)》, 2023, 58(2): 28-32.
[4] 陈蒋欢,王尧,任艳丽. 2-诣零-clean环[J]. 《山东大学学报(理学版)》, 2022, 57(2): 14-22.
[5] 唐国亮,陈玲巧,狄振兴. 强右极小内射, semiperfect, 右 PF, clean n阶三角矩阵环的等价刻画[J]. 《山东大学学报(理学版)》, 2022, 57(2): 8-13.
[6] 刘松松,吴俊. 强g(x)-J#-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 20-27.
[7] 郑纪文,程智. (强)J-*-三幂等-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 13-19.
[8] 孙晓青,肖燕婷,崔冉冉. 关于环的Q-clean性及Q-clean corner的讨论[J]. 《山东大学学报(理学版)》, 2020, 55(2): 79-83.
[9] 徐莹莹,殷晓斌. JGR-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(2): 84-90.
[10] 陈怡宁,秦龙. g(x)-诣零clean环[J]. 《山东大学学报(理学版)》, 2019, 54(6): 41-46.
[11] 高汉鹏,殷晓斌. g(x)-J-Clean环[J]. 山东大学学报(理学版), 2017, 52(2): 24-29.
[12] 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24.
[13] 张子珩,储茂权,殷晓斌. GWCN环的若干性质[J]. 山东大学学报(理学版), 2016, 51(12): 10-16.
[14] 王秀兰. 半布尔群环[J]. J4, 2012, 47(10): 18-20.
[15] 张芳娟. 素*-环上的非线性强保*-交换映射[J]. J4, 2011, 46(6): 67-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!