《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (9): 83-90.doi: 10.6040/j.issn.1671-9352.0.2019.010
任建龙
REN Jian-long
摘要: 讨论了一类利用内部某点不同时刻的温度观测值重构加热器壁表面热通量的热传导反问题。利用分离变量法求解出正问题的解析解,然后将原问题转化为第二类Volterra积分方程,并证明了积分方程解的唯一性。利用一种直接求解法进行数值模拟,数值结果验证了所提出方法的可行性与有效性,且表面热通量的重构效果很好。
中图分类号:
[1] ALIFANOV O M. Inverse heat transfer problems[M]. Berlin: Springer-Verlag, 1994. [2] CHEN W L, YANG Y C. Inverse prediction of frictional heat flux and temperature in sliding contact with a protective strip by iterative regularization method[J]. Applied Mathematical Modelling, 2011, 35(6):2874-2886. [3] ZHUO Lijun, YI Fajun, MENG Songhe. An inverse method for the estimation of a long-duration surface heat flux on a finite solid[J]. International Journal of Heat and Mass Transfer, 2016, 106:1087-1096. [4] DUDA P. A general method for solving transient multidimensional inverse heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2016, 93:665-673. [5] UDAYRAJ, CHAKRABORTY S, GANGULY S, et al. Estimation of surface heat flux in continuous casting mould with limited measurement of temperature[J]. International Journal of Thermal Sciences, 2017, 118:435-447. [6] WOOBURY K A, BECK J V. Estimation metrics and optimal regularization in a Tikhonov digital filter for the inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer, 2013, 62:31-39. [7] TIAN J M, CHEN B, ZHOU Z F. Methodology of surface heat flux estimation for 2D multi-layer mediums[J]. International Journal of Heat and Mass Transfer, 2017, 114:675-687. [8] MYRICK J A, KEYHANI M, FRANKEL J I. Determination of surface heat flux and temperature using in-depth temperature data: experimental verification[J]. International Journal of Heat and Mass Transfer, 2017, 111:982-998. [9] FABIOLA S, RODRIGUEZ D R P, RODRIGUEZ D R M, et al. Mathematical model for localised and surface heat flux of the human body obtained from measurements performed with a calorimetry minisensor[J]. Sensors, 2017, 17(12): 2749. [10] SU J, HEWITT G F. Inverse heat conduction problem of estimating time-varying heat transfer coefficient[J]. Numerical Heat Transfer, 2004, 45(8):777-789. [11] SU J, NETO A J S. Heat source estimation with the conjugate gradient method in inverse linear diffusive problems[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2001, 23(3):321-334. [12] ONYANGOA T T M, INGHAMA D B, LESNIC D. Reconstruction of heat transfer coefficients using the boundary element method[J]. Computers & Mathematics with Applications, 2008, 56(1):114-126. [13] FAZELI H, MIRZAEI M. Shape identification problems on detecting of defects in a solid body using inverse heat conduction approach[J]. Journal of Mechanical Science and Technology, 2012, 26(11):3681-3690. [14] LIU F B. Particle swarm optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8):2062-2068. [15] LI Ran, HUANG Zhongwei, LI Gensheng, et al. A modified space marching method using future temperature measurements for transient nonlinear inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer, 2016, 106:1157-1163. |
[1] | 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54-61. |
[2] | 张伟杰,王新利,王汉杰. 亚纯函数微分多项式IM分担值的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 90-96. |
[3] | 孙奕欣,魏广生. 已知部分势函数的AKNS算子的逆谱问题[J]. 《山东大学学报(理学版)》, 2019, 54(8): 50-54. |
[4] | 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. |
[5] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[6] | 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54. |
[7] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[8] | 曹伟东,戴涛,于金彪,王晓宏,施安峰. 化学驱模型中压力方程的交替方向解法改进[J]. 山东大学学报(理学版), 2018, 53(10): 88-94. |
[9] | 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42. |
[10] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[11] | 扈培础,吴爱迪. 关于L-函数的问题[J]. 山东大学学报(理学版), 2016, 51(6): 1-15. |
[12] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[13] | 董建伟,娄光谱,王艳萍. 一个半导体简化能量输运模型稳态解的唯一性[J]. 山东大学学报(理学版), 2016, 51(2): 37-41. |
[14] | 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33. |
[15] | 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48. |
|