《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 48-55.doi: 10.6040/j.issn.1671-9352.0.2019.785
• • 上一篇
张申贵
ZHANG Shen-gui
摘要: 研究一类变指数基尔霍夫型分数阶方程狄利克雷边值问题。当非线性项在无穷远处p+-超线性增长时, 利用临界点理论、变分方法及分数阶变指数空间理论, 得到了此类问题无穷多个解存在的充分条件。
中图分类号:
[1] BISCI G, RADULESCU D, SERVADI R. Variational methods for nonlocal fractional problems[M]. Cambridge: Cambridge University Press, 2016. [2] SERVADEL R, VALDINOCI E. Mountain pass solutions for non-local elliptic operators[J]. Journal of Mathematical Analysis and Applications, 2012, 389(2):887-898. [3] XIANG Mingqi, ZHANG Binlin, GUO Xiuying. Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem[J]. Nonlinear Analysis, 2015, 120(1):299-313. [4] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 11(5):105-116. [5] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM Journal Application Mathematics, 2006, 66(4):1383-1406. [6] KARAMA F, SADIK K, ZIAD L. A variable exponent nonlocal p(x)-Laplacian equation for image restoration[J]. Comput Math Appl, 2018, 75(2):534-546. [7] BAHROUNI A, RADULESCU D. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent[J]. Discrete and Continuous Dynamical Systems, Series S, 2018, 11(3):1-17. [8] KAUFMANN U, ROSSI J, VIDAL R. Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2017, 76(1):1-10. [9] BAHROUNI A. Comparison and sub-supersolution principles for the fractional p(x)-Laplacian[J]. Journal of Mathematical Analysisand Applications, 2018, 112(3):299-313. [10] AZROUL E, BENKIRANE A, SHIMI M. Eigenvalue problems involving the fractional p(x)-Laplacian operator[J]. Advances in Operator Theory, 2019, 4(2):539-555. [11] 张申贵. 一类变指数分数阶微分方程的多重解[J]. 吉林大学学报(理学版), 2018, 56(6):1324-1330. ZHANG Shengui. Multiple solutions for a class of fractional differential equation with variable exponents[J]. Journal of Jilin University(Science Edition), 2018, 56(6):1324-1330. [12] 顾光泽, 吴鲜, 余渊洋, 等. R3上分数阶Kirchhoff方程正解的多重性及集中性[J].中国科学: 数学, 2019, 49(1):39-72. GU Guangze, WU Xian, YU Yuanyang, et al. Multiplicity and concentration behavior of positive solutions for a fractional Kirchhoff equation in R3[J]. Scientia Sinica Mathematica, 2019, 49(1):39-72. [13] FISCELLA A, VALDINOCI E. A critical Kirchhoff type problem involving a nonlocal operator[J]. Nonlinear Analysis: Theory Methods Applications, 2014, 94(1):156-170. [14] WILLEM M. Minimax Theorems[M]. Boston: Birkhauser, 1996. |
[1] | 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28. |
[2] | 方小珍,孙爱文,王敏,束立生. 广义多线性算子在变指数空间上的有界性[J]. 《山东大学学报(理学版)》, 2019, 54(4): 6-16. |
[3] | 吴忆佳,成荣. 一类Schrödinger方程的无穷多非平凡解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 84-88. |
[4] | 王迎美,王桢东,李功胜. 基于变指数分数阶全变差和整数阶全变差的图像恢复算法[J]. 《山东大学学报(理学版)》, 2019, 54(11): 115-126. |
[5] | 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1-6. |
[6] | 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37. |
[7] | 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50. |
[8] | 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110. |
[9] | 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103. |
[10] | 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18. |
[11] | 张申贵. 带p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版), 2016, 51(10): 48-53. |
[12] | 孙国伟, 买阿丽. 一类二阶非线性差分方程同宿解的多解性[J]. 山东大学学报(理学版), 2015, 50(05): 51-54. |
[13] | 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61-68. |
[14] | 张国威1,陈昂2. 初始例函数的游荡域的无穷连通性[J]. 山东大学学报(理学版), 2014, 49(04): 70-73. |
[15] | 张申贵. 一类超线性p(x)-调和方程的无穷多解[J]. J4, 2012, 47(10): 116-120. |
|