《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (6): 94-101.doi: 10.6040/j.issn.1671-9352.0.2021.451
• • 上一篇
王小焕1,吕广迎1*,戴利杰2
WANG Xiao-huan1, LÜ Guang-ying1*, DAI Li-jie2
摘要: 推广了经典的Gronwall不等式, 得到了具有多个奇异点的广义Gronwall不等式, 并利用此不等式证明了分数阶随机微分方程组温和解的存在唯一性。
中图分类号:
[1] BELLMEN R. The stability of solutions of linear differential equations[J]. Duke Mathematical Journal, 1943, 10(4):643-647. [2] LASALLE J. Uniqueness theorems and successive approximations[J]. Annals of Mathematics, 1949, 50(3):722-730. [3] WU Q. A new type of the Gronwall-Bellman inequality and its application to fractional stochastic differential equations[J]. Cogent Mathematics, 2017, 4(1):1279781. [4] PACHPATTE B G. On some generalizations of Bellmans lemma[J]. Journal of Mathematical Analysis and Applications, 1975, 51(1):141-150. [5] TIAN Y, FAN M, MENG F. A generalization of retarded integral inequalities in two independent variables and their applications[J]. Applied Mathematics and Computation, 2013, 221(4):239-248. [6] JIANG F, MENG F. Explicit bounds on some new nonlinear integral inequalities with delay[J]. Journal of Mathematical Analysis and Applications, 2007, 205(1):479-486. [7] ABDELDAIM A, YAKOUT M. On some new integral inequalities of Gronwall-Bellman-Pachpatte type[J]. Applied Mathematics and Computation Elsevier, 2011, 217(20):7887-7899. [8] FENG Q H, ZHENG B. Generalized Gronwall-Bellman-type delay dynamic inequalities on time scales and their applications[J]. Applied Mathematics and Computation, 2012, 218(15):7880-7892. [9] DING X L, DANIEL C L, NIETO J J. A new generalized Gronwall inequality with a double singularity and its applications to fractional stochastic differential equations[J]. Stochastic Analysis and Applications, 2019, 37(6):1042-1056. [10] WEBB J R L. Weakly singular Gronwall inequalities and applications to fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2019, 471(1-2):692-711. [11] LI Y, CHEN Y Q, PODLUBNY I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability[J]. Computers and Mathematics with Applications, 2010, 59(5):1810-1821. [12] XU R, ZHANG Y. Generalized Gronwall fractional summation inequalities and their applications[J]. Journal of Inequalities and Applications, 2015, 2015(1):242-251. [13] CHO Y J, KIM Y H. New Gronwall-Ou-Iang type integral inequalities and their applications[J]. The Anziam Journal, 2008, 50(1):111-127. [14] LIN S. Generalized Gronwall inequalities and their applications to fractional differential equations[J]. Journal of Inequalities and Applications, 2013, 2013(1):549-558. [15] DELBOSCO D, RODINO L. Existence and uniqueness for a nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 1996, 204(2):609-625. [16] RAKKIYAPPAN R, VELMURUGAN G, CAO J D. Stability analysis of fractional order complex-valued neural networks with time delays[J]. Chaos, Solitons and Fractals, 2015, 78:297-316. [17] CHEN C J, CHEUNG W S, ZHAO D D. Gronwall-Bellman-type integral inequalities and applications to BVPs[J]. Journal of Inequalities and Applications, 2009, 2009(1):1-15. [18] CHEPYZHOV V V, PATA V, VISHIK M I. Averaging of 2D Navier-Stokes equations with singularly oscillating forces[J]. Nonlinearity, 2009, 22(2):351-370. [19] AGARWAL R P, DENG S F, ZHANG W N. Generalization of a retarded Gronwall-like inequality and its applications[J]. Applied Mathematics and Computation, 2005, 165(3):599-612. [20] WU A L, LIU L, HUANG T W, et al. Mittag-Leffler stability of fractional order neural networks in the presence of generalized piecewise constant arguments[J]. Neural Networks, 2017, 85:118-127. [21] FAN S J, JIANG L, TIAN D J. One-dimensional BSDEs with finite and infinite time horizons[J]. Stochastic Processes and their Applications, 2011, 121(3):427-440. [22] PEDJEU J, LADDE G S. Stochastic fractional differential equations: modeling, method and analysis[J]. Chaos, Solitons & Fractals, 2012, 45(3):279-293. [23] DING X L, JIANG Y L. Semilinear fractional differential equations based on a new integral operator approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):5143-5150. [24] MAINARDI F. Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[M]. London: Imperial College Press, 2010. [25] LI K X. Stochastic delay fractional evolution equations driven by fractional Brownian motion[J]. Mathematical Methods in the Applied Sciences, 2012, 38(8):1582-1591. |
[1] | 陈文杰,孙桂荣,黄志刚. 关于微分-差分多项式的零点和唯一性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 57-65. |
[2] | 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21. |
[3] | 李朝倩. 一类非线性四阶边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 93-100. |
[4] | 杨丽娟. 一类非线性四阶常微分方程边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 101-108. |
[5] | 李效敏,吴聪聪. 亚纯函数与L-函数分担四个有限值的唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 1-8. |
[6] | 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54-61. |
[7] | 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90. |
[8] | 张伟杰,王新利,王汉杰. 亚纯函数微分多项式IM分担值的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 90-96. |
[9] | 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. |
[10] | 王凌霜,黄志刚. 非线性微分方程解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 106-114. |
[11] | 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96. |
[12] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[13] | 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54. |
[14] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[15] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
|