您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (6): 94-101.doi: 10.6040/j.issn.1671-9352.0.2021.451

• • 上一篇    

Gronwall不等式的推广及应用

王小焕1,吕广迎1*,戴利杰2   

  1. 1.南京信息工程大学数学与统计学院, 江苏 南京 210044;2.河南大学数学与统计学院, 河南 开封 475001
  • 发布日期:2022-06-10
  • 作者简介:王小焕(1980— ),女,博士,讲师,研究方向为偏微分方程、随机分析. E-mail:003304@nuist.edu.cn *通信作者简介:吕广迎(1982— ),男,教授,研究方向为随机分析、无穷维动力系统. E-mail:gylvmaths@nuist.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11771123;11901158;12171247)

Generalization of Gronwalls inequality and applications

WANG Xiao-huan1, LÜ Guang-ying1*, DAI Li-jie2   

  1. 1. College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    2. School of Mathematics and Statistics, Henan University, Kaifeng 475001, Henan, China
  • Published:2022-06-10

摘要: 推广了经典的Gronwall不等式, 得到了具有多个奇异点的广义Gronwall不等式, 并利用此不等式证明了分数阶随机微分方程组温和解的存在唯一性。

关键词: Gronwall不等式, 分数阶随机微分方程, 唯一性

Abstract: The classical Gronwalls inequality is generalized and a Gronwalls inequality with multiple singularity points is obtained. Then the existence and uniqueness of solutions to stochastic fractional order differential equations is obtained by using the obtained inequality.

Key words: Gronwalls inequality, stochastic fractional differential equations, uniqueness

中图分类号: 

  • O212.1
[1] BELLMEN R. The stability of solutions of linear differential equations[J]. Duke Mathematical Journal, 1943, 10(4):643-647.
[2] LASALLE J. Uniqueness theorems and successive approximations[J]. Annals of Mathematics, 1949, 50(3):722-730.
[3] WU Q. A new type of the Gronwall-Bellman inequality and its application to fractional stochastic differential equations[J]. Cogent Mathematics, 2017, 4(1):1279781.
[4] PACHPATTE B G. On some generalizations of Bellmans lemma[J]. Journal of Mathematical Analysis and Applications, 1975, 51(1):141-150.
[5] TIAN Y, FAN M, MENG F. A generalization of retarded integral inequalities in two independent variables and their applications[J]. Applied Mathematics and Computation, 2013, 221(4):239-248.
[6] JIANG F, MENG F. Explicit bounds on some new nonlinear integral inequalities with delay[J]. Journal of Mathematical Analysis and Applications, 2007, 205(1):479-486.
[7] ABDELDAIM A, YAKOUT M. On some new integral inequalities of Gronwall-Bellman-Pachpatte type[J]. Applied Mathematics and Computation Elsevier, 2011, 217(20):7887-7899.
[8] FENG Q H, ZHENG B. Generalized Gronwall-Bellman-type delay dynamic inequalities on time scales and their applications[J]. Applied Mathematics and Computation, 2012, 218(15):7880-7892.
[9] DING X L, DANIEL C L, NIETO J J. A new generalized Gronwall inequality with a double singularity and its applications to fractional stochastic differential equations[J]. Stochastic Analysis and Applications, 2019, 37(6):1042-1056.
[10] WEBB J R L. Weakly singular Gronwall inequalities and applications to fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2019, 471(1-2):692-711.
[11] LI Y, CHEN Y Q, PODLUBNY I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability[J]. Computers and Mathematics with Applications, 2010, 59(5):1810-1821.
[12] XU R, ZHANG Y. Generalized Gronwall fractional summation inequalities and their applications[J]. Journal of Inequalities and Applications, 2015, 2015(1):242-251.
[13] CHO Y J, KIM Y H. New Gronwall-Ou-Iang type integral inequalities and their applications[J]. The Anziam Journal, 2008, 50(1):111-127.
[14] LIN S. Generalized Gronwall inequalities and their applications to fractional differential equations[J]. Journal of Inequalities and Applications, 2013, 2013(1):549-558.
[15] DELBOSCO D, RODINO L. Existence and uniqueness for a nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 1996, 204(2):609-625.
[16] RAKKIYAPPAN R, VELMURUGAN G, CAO J D. Stability analysis of fractional order complex-valued neural networks with time delays[J]. Chaos, Solitons and Fractals, 2015, 78:297-316.
[17] CHEN C J, CHEUNG W S, ZHAO D D. Gronwall-Bellman-type integral inequalities and applications to BVPs[J]. Journal of Inequalities and Applications, 2009, 2009(1):1-15.
[18] CHEPYZHOV V V, PATA V, VISHIK M I. Averaging of 2D Navier-Stokes equations with singularly oscillating forces[J]. Nonlinearity, 2009, 22(2):351-370.
[19] AGARWAL R P, DENG S F, ZHANG W N. Generalization of a retarded Gronwall-like inequality and its applications[J]. Applied Mathematics and Computation, 2005, 165(3):599-612.
[20] WU A L, LIU L, HUANG T W, et al. Mittag-Leffler stability of fractional order neural networks in the presence of generalized piecewise constant arguments[J]. Neural Networks, 2017, 85:118-127.
[21] FAN S J, JIANG L, TIAN D J. One-dimensional BSDEs with finite and infinite time horizons[J]. Stochastic Processes and their Applications, 2011, 121(3):427-440.
[22] PEDJEU J, LADDE G S. Stochastic fractional differential equations: modeling, method and analysis[J]. Chaos, Solitons & Fractals, 2012, 45(3):279-293.
[23] DING X L, JIANG Y L. Semilinear fractional differential equations based on a new integral operator approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):5143-5150.
[24] MAINARDI F. Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[M]. London: Imperial College Press, 2010.
[25] LI K X. Stochastic delay fractional evolution equations driven by fractional Brownian motion[J]. Mathematical Methods in the Applied Sciences, 2012, 38(8):1582-1591.
[1] 陈文杰,孙桂荣,黄志刚. 关于微分-差分多项式的零点和唯一性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 57-65.
[2] 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21.
[3] 李朝倩. 一类非线性四阶边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 93-100.
[4] 杨丽娟. 一类非线性四阶常微分方程边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 101-108.
[5] 李效敏,吴聪聪. 亚纯函数与L-函数分担四个有限值的唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 1-8.
[6] 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54-61.
[7] 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90.
[8] 张伟杰,王新利,王汉杰. 亚纯函数微分多项式IM分担值的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 90-96.
[9] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[10] 王凌霜,黄志刚. 非线性微分方程解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 106-114.
[11] 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96.
[12] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[13] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[14] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[15] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!