《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 52-62.doi: 10.6040/j.issn.1671-9352.4.2022.7343
Yaoqi CHEN(),Weihua XU*(),Zongying JIANG
摘要:
将三支形式概念分析这一工具引入到数据恢复领域,通过定义三支概念的恢复集和恢复度,研究三支概念间的隐藏信息,提出了一种有效的形式背景恢复算法。同时,针对三支概念恢复集问题,研究三支概念对形式背景二元关系的约束,设计了恢复集的合取范式化简(conjunctive normal form simplification,CNFS) 算法,进一步给出了恢复集的动态更新算法,以适应形式背景的不断变化。最后,使用UCI机器学习数据库中的数据集对CNFS算法进行了测试。实验结果表明,CNFS算法在形式背景恢复方面具有较高的准确性和有效性,同时也验证了不同概念对认知的重要程度是不同的。
中图分类号:
1 | WILLE R . Formal concept analysis[J]. Electronic Notes in Discrete Mathematics, 1999, 2 (1): 199- 200. |
2 | QI J J, WEI L, YAO Y Y. Three-way formal concept analysis[C] //Proceedings of the 9th International Conference on Rough Sets and Knowledge Technology. Shanghai: Springer, 2014: 732-741. |
3 | YAO Y Y. Three-way decision: an interpretation of rules in rough set theory[C]//Proceedings of the 4th International Conference on Rough Sets and Knowledge Technology. Gold Coast: Springer, 2009: 14-16. |
4 |
ZHAN J , YE J , DING W , et al. A novel three-way decision model based on utility theory in incomplete fuzzy decision systems[J]. IEEE Transactions on Fuzzy Systems, 2022, 30 (7): 2210- 2226.
doi: 10.1109/TFUZZ.2021.3078012 |
5 | HAO F , GAO J , BISOGNI C , et al. Stability of three-way concepts and its application to natural language generation[J]. Pattern Recognition, 2021, 149, 51- 58. |
6 | HAO F , YANG Y , MIN G , et al. Incremental construction of three-way concept lattice for knowledge discovery in social networks[J]. Information Science, 2021, 578, 257- 280. |
7 |
WEI L , LIU L , QI J , et al. Rules acquisition of formal decision contexts based on three-way concept lattices[J]. Information Science, 2020, 516, 529- 544.
doi: 10.1016/j.ins.2019.12.024 |
8 | 祁建军, 汪文威. 多线程并行构建三支概念[J]. 西安交通大学学报, 2017, 51 (3): 116- 121. |
QI Jianjun , WANG Wenwei . A multithreaded parallel algorithm for constructing three-way concepts[J]. Journal of Xi'an Jiaotong University, 2017, 51 (3): 116- 121. | |
9 | 钱婷. 经典概念格与三支概念格的构造及知识获取理论[J]. 西安: 西北大学, 2016. |
QIAN Ting. The constructions of classical concept lattices and three-way concept lattices and knowledge acquisition[J]. Xi'an: Northwest University, 2016. | |
10 | QIAN T , WEI L , QI J . Constructing three-way concept lattices based on apposition and subposition of formal contexts[J]. Knowledge-Based Systems, 2017, 116, 39- 48. |
11 | 王明, 魏玲. 基于K-Modes聚类的OE-概念格压缩[J]. 模式识别与人工智能, 2018, (8): 704- 714. |
WANG Ming , WEI Ling . OE-Concept lattice compression based on K-Modes clustering[J]. Pattern Recognition and Artificial Intelligence, 2018, (8): 704- 714. | |
12 | HAO F , YANG Y , MIN G , et al. Incremental construction of three-way concept lattice for knowledge discovery in social networks[J]. Information Sciences, 2021, 578, 257- 280. |
13 | LI J H , HUANG C C , QI J J , et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378, 244- 263. |
14 | HUANG C , LI J , MEI C , et al. Three-way concept learning based on cognitive operators: an information fusion viewpoint[J]. International Journal of Approximate Reasoning, 2017, 84, 1- 20. |
15 | YUAN K H , XU W H , LI W T , et al. An incremental learning mechanism for object classification based on progressive fuzzy three-way concept[J]. Information Sciences, 2022, 584, 127- 147. |
16 | HE X , WEI L , SHE Y . L-fuzzy concept analysis for three-way decisions: basic definitions and fuzzy inference mechanisms[J]. International Journal of Machine Learning and Cybernetics, 2018, 9 (11): 1857- 1867. |
17 | LIU X , MAO W , DAI J , et al. Comprehensive fuzzy concept-oriented three-way decision and its application[J]. Information Sciences, 2022, 593, 233- 270. |
18 | SUBHASHINI L , LI Y , ZHANG J , et al. Integration of semantic patterns and fuzzy concepts to reduce the boundary region in three-way decision-making[J]. Information Sciences, 2022, 595, 257- 277. |
19 | SINGH P . Three-way fuzzy concept lattice representation using neutrosophicset[J]. International Journal of Machine Learning and Cybernetics, 2016, 8 (1): 1- 11. |
20 | YAO Y Y . Interval sets and three-way concept analysis in incomplete contexts[J]. International Journal of Machine Learning and Cybernetics, 2017, 8 (1): 3- 20. |
21 | LI J H , MEI C L . Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction[J]. International Journal of Approximate Reasoning, 2013, 54 (1): 149- 165. |
22 | LI M , WANG G . Approximate concept construction with three-way decisions and attribute reduction in incomplete contexts[J]. Knowledge-Based Systems, 2016, 91, 165- 178. |
23 | ZHI H , CHAO H . Three-way concept analysis for incomplete formal contexts[J]. Mathematical Problems in Engineering, 2018, 2018, 1- 11. |
24 | YAO Y Y . Three-way conflict analysis: reformulations and extensions of the Pawlakmodel[J]. Knowledge-Based Systems, 2019, 180, 26- 37. |
25 | FAN Y, QI J J, WEI L. A conflict analysis model based on three-way decisions[C]// Proceedings of International Joint Conference. QuyNhon: Springer, 2018: 522-532. |
26 | SINGH P K . Medical diagnoses using three-way fuzzy concept lattice and their Euclidean distance[J]. Computational and Applied Mathematics, 2018, 37, 3283- 3306. |
27 | SUBRAMANIAN C M , CHERUKURI A K , CHELLIAH C . Role based access control design using three-way formal concept analysis[J]. International Journal of Machine Learning and Cybernetics, 2018, 9 (11): 1- 31. |
28 | LONG B H , XU W H , ZHANG X Y , et al. The dynamic update method of attribute-induced three-way granular concept in formal contexts[J]. International Journal of Approximate Reasoning, 2020, 126, 228- 248. |
29 | NIU J , HUANG C , LI J , et al. Parallel computing techniques for concept-cognitive learning based on granular computing[J]. International Journal of Machine Learning and Cybernetics, 2018, 9 (11): 1785- 1805. |
30 | SHI Y , MI Y L , LI J H , et al. Concept-cognitive learning model for incremental concept learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2021, 51 (2): 809- 821. |
31 | SHI Y , MI Y L , LI J H , et al. Concurrent concept-cognitive learning model for classification[J]. Information Sciences, 2019, 496, 65- 81. |
32 | ZHANG T , LI H , LIU M , et al. Incremental concept-cognitive learning based on attribute topology[J]. International Journal of Approximate Reasoning, 2020, 118, 173- 189. |
33 | YUAN K H , XU W H , LI W T , et al. An incremental learning mechanism for object classification based on progressive fuzzy three-way concept[J]. Information Sciences, 2022, 584, 127- 147. |
34 | QI J J , QIAN T , WEI L . The connections between three-way and classical concept lattices[J]. Knowledge-Based Systems, 2016, 91, 143- 151. |
35 | GANTER B , WILLE R . Formal concept analysis: mathematical foundations[M]. New York: Springer, 1999. |
36 | 郭莹, 张长胜, 张斌. 求解SAT问题的算法的研究进展[J]. 计算机科学, 2016, 43 (3): 8- 17. |
GUO Ying , ZHANG Changsheng , ZHANG Bin . Research advance of SAT solving algorithm[J]. Computer Science, 2016, 43 (3): 8- 17. | |
37 | 张文修, 梁怡, 徐萍. 基于包含度的不确定推理[M]. 北京: 清华大学出版社, 2007. |
ZHANG Wenxiu , LIANG Yi , XU Ping . Uncertainty reasoning based on inclusion degree[M]. Beijing: Tsinghua University Press, 2007. | |
38 | 魏玲, 曹丽, 祁建军, 等. 形式概念分析中的概念约简与概念特征[J]. 中国科学(信息科学), 2020, 50, 1817- 1833. |
WEI Ling , CAO Li , QI Jianjun , et al. Concept reduction and concept characteristics in formal concept analysis[J]. Science China(Information Sciences), 2020, 50, 1817- 1833. | |
39 | 曹丽, 魏玲, 祁建军. 保持二元关系不变的概念约简[J]. 模式识别与人工智能, 2018, 31 (6): 516- 524. |
CAO Li , WEI Ling , QI Jianjun . Concept reduction preserving binary relations[J]. Pattern Recognition and Artificial Intelligence, 2018, 31 (6): 516- 524. | |
40 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
ZHOU Zhihua . Machine learning[M]. Beijing: Tsinghua University Press, 2016. |
[1] | 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51. |
[2] | 时俊鹏,张燕兰. 面向对象删除的局部邻域粗糙集动态更新算法[J]. 《山东大学学报(理学版)》, 2023, 58(5): 17-25. |
[3] | 韩培磊,魏玲,王振,赵思雨. FCA中的互补概念及其性质与生成[J]. 《山东大学学报(理学版)》, 2022, 57(8): 60-67. |
[4] | 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82. |
[5] | 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12. |
[6] | 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80. |
[7] | 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65. |
[8] | 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115. |
[9] | 任睿思,魏玲,祁建军. 三支弱协调决策形式背景的规则获取[J]. 山东大学学报(理学版), 2018, 53(6): 76-85. |
[10] | 陈保会,张凌,史开泉. P-信息智能动态融合与信息规律状态智能识别[J]. 山东大学学报(理学版), 2018, 53(2): 83-87. |
[11] | 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12. |
[12] | 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110. |
[13] | 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103. |
[14] | 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106. |
|