《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 141-149.doi: 10.6040/j.issn.1671-9352.0.2025.062
• • 上一篇
蒋晓倩1,孙秀萍2,宋爱新1*
JIANG Xiaoqian1, SUN Xiuping2, SONG Aixin1*
摘要: 为获得稳定的乳液结构,进一步发挥其在活性物质包封及输运中的作用,通过两步乳化法制备水包油包水(W1/O/W2)型双重乳液,并将其进行凝胶化得到乳液凝胶。以辛癸酸甘油酯(ODO)为油相,聚甘油蓖麻醇酸酯(PGPR)和十六烷基三甲基溴化铵(CTAB)原位修饰的纳米二氧化硅颗粒分别作为W1/O、O/W2乳液的界面稳定剂,考察乳化剂用量及油水比例对乳液类型、微观结构及稳定性的影响,确定制备稳定的W1/O及O/W2乳液的最佳配比。在此基础上,将一步乳化得到的W1/O乳液作为分散相,W2作为连续相,进一步乳化制备水包油包水(W1/O/W2)型双重乳液。通过在外水相(W2)中添加结冷胶,构筑结构稳定的乳液凝胶体系,其在室温放置60 d后,乳液微观结构未发现明显变化。本研究通过将外水相凝胶化获得稳定性良好的双重乳液凝胶体系,为活性物质封装和缓释等载体体系的应用开发提供有益的参考。
中图分类号:
[1] LAMBA H, SATHISH K, SABIKHI L. Double emulsions: emerging delivery system forplant bioactives[J]. Food and Bioprocess Technology, 2015, 8(4):709-728. [2] KUMAR A, KAUR R, KUMARV, et al. New insights into water-in-oil-in-water(W/O/W)double emulsions: properties, fabrication, instability mechanism, and food applications[J]. Trends in Food Science &Technology, 2022, 128:22-37. [3] GUO J X, CUI L J, MENG Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: a review[J]. Food Hydrocolloids, 2023, 137:108313. [4] LIN D Q, KELLY A L, MIAO S. Preparation, structure-property relationships and applications of different emulsion gels: bulk emulsion gels, emulsion gel particles, and fluid emulsion gels[J]. Trends in Food Science & Technology, 2020, 102:123-137. [5] FLAIZ L, FREIRE M,COFRADES S, et al. Comparison of simple, double and gelled double emulsions as hydroxytyrosol and n-3 fatty acid delivery systems[J]. Food Chemistry, 2016, 213:49-57. [6] SHU J X, MCCLEMENTS D J, LUO S J, et al. Effect of internal and external gelation on the physical properties, water distribution, and lycopene encapsulation properties of alginate-based emulsion gels[J]. Food Hydrocolloids, 2023, 139:108499. [7] ADITYA N P, ADITYA S, YANG H, et al. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion[J]. Food Chemistry, 2015, 173:7-13. [8] DECARVALHO-GUIMAR(~overA)ESF B, CORREA K L,DE SOUZA T P, et al. A review of Pickering emulsions: perspectives and applications[J]. Pharmaceuticals, 2022, 15(11):1413. [9] XIAO J, LU X X, HUANG Q R. Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: fabrication, microstructure, stability and invitro digestion profile[J]. Food Hydrocolloids, 2017, 62:230-238. [10] SPYROPOULOS F, DUFFUS L J, SMITH P, et al. Impact of Pickering intervention on the stability of W1/O/W2double emulsions of relevance to foods[J]. Langmuir, 2019, 35(47):15137-15150. [11] BINKS B P, DESFORGES A, DUFF D G. Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant[J]. Langmuir, 2007, 23(3):1098-1106. [12] PARIA S, KHILAR K C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface[J]. Advances in Colloid and Interface Science, 2004, 110(3):75-95. [13] 陈钊,蒋建中,崔正刚. 表面活性剂-纳米颗粒相互作用与智能体系的构建(II)相反电荷表面活性剂-纳米颗粒相互作用(i):开关转移构建开关性Pickering乳状液和Pickering泡沫[J]. 日用化学工业, 2019, 49(8):492-502. CHEN Zhao, JIANG Jianzhong, CUI Zhenggang. Interactions between surfactants and nanoparticles and the construction of smart systems(Ⅱ). Interaction of the nanoparticle with an oppositely charged ionic surfactant(ⅰ): construction of switchable Pickering emulsions and Pickering foams via switch transference[J]. China Surfactant Detergent & Cosmetics, 2019, 49(8):492-502. [14] BINKS B P, RODRIGUES J A, FRITH W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J]. Langmuir, 2007, 23(7):3626-3636. [15] MORAIS J M, ROCHA-FILHO P A, BURGESS D J. Influence of phase inversion on the formation and stability of one-step multiple emulsions[J]. Langmuir, 2009, 25(14):7954-7961. [16] CLEGG P S, TAVACOLI J W, WILDE P J. One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches[J]. Soft Matter, 2016, 12(4):998-1008. [17] DING Shukai, SERRA C A, VANDAMME T F, et al. Double emulsions prepared by two-step emulsification:history, state-of-the-art and perspective[J]. Journal of Controlled Release, 2019, 295:31-49. [18] CHEN M M, LI W T, WANG W B, et al. Effects of gelation on the stability, tribological properties and time-delayed release profile of double emulsions[J]. Food Hydrocolloids, 2022, 131:107753. [19] CHEN X, MCCLEMENTS D J, ZHU Y Q, et al. Gastrointestinal fate of fluid and gelled nutraceutical emulsions:impact on proteolysis, lipolysis, and quercetin bioaccessibility[J]. Journal of Agricultural and Food Chemistry, 2018, 66(34):9087-9096. |
[1] | 李璐,张瑞霞. 一类具有双垂直传播和媒介呈Logistic增长的媒介传染病模型[J]. 《山东大学学报(理学版)》, 2025, 60(4): 93-103. |
[2] | 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49. |
[3] | 秦佳欣, 李淑萍. 复杂网络中带有自我防护意识的SEIR模型分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 60-71. |
[4] | 买阿丽,孙国伟. 捕食者斑块间扩散的集合种群模型的稳定性分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 20-28. |
[5] | 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83. |
[6] | 苗卉,夏米西努尔·阿布都热合曼. 具有胞间传播和蛋白酶抑制剂的时滞HIV模型的动力学分析[J]. 《山东大学学报(理学版)》, 2024, 59(4): 90-97. |
[7] | 阿迪力·艾力,开依沙尔·热合曼. 求解广义Burgers-Fisher方程的微分求积法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 30-39. |
[8] | 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88. |
[9] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[10] | 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91. |
[11] | 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81. |
[12] | 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59. |
[13] | 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96. |
[14] | 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28. |
[15] | 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53. |
|