您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 40-49.doi: 10.6040/j.issn.1671-9352.0.2024.184

• • 上一篇    

一类非对称非局部扩散系统双稳行波解的稳定性

李丝雨,杨赟瑞*   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2025-04-08
  • 通讯作者: 杨赟瑞(1979— ),女,教授,博士,研究方向为反应扩散方程、泛函微分方程、微分方程与动力系统. E-mail:lily1979101@163.com
  • 作者简介:李丝雨(1999— ),女,硕士研究生,研究方向为反应扩散、方程微分方程与动力系统、非线性泛函分析.E-mail:lsy04192022@163.com*通信作者:杨赟瑞(1979— ),女,教授,博士,研究方向为反应扩散方程、泛函微分方程、微分方程与动力系统. E-mail:lily1979101@163.com
  • 基金资助:
    国家自然科学基金资助项目(12361038)

Stability of bistable waves for a class of system with asymmetric and nonlocal dispersal

LI Siyu, YANG Yunrui*   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2025-04-08

摘要: 考虑一类非对称非局部扩散系统的双稳行波解的稳定性。 在双稳行波解存在的基础上, 借助上下解方法结合单调半流的收敛性结果得到双稳行波解的全局稳定性,并通过分析技术建立双稳行波解的唯一性。

关键词: 非对称非局部扩散, 双稳行波解, 稳定性

Abstract: This paper considers the stability of bistable traveling wave solutions for a class of system with asymmetric and nonlocal dispersal. On the basis of the existence of bistable waves, the global stability of bistable waves is obtained with the help of the method of super-and sub-solutions combining with the convergence results of monotone semiflows. Then, the uniqueness of bistable waves is established by using the analysis techniques.

Key words: asymmetric and nonlocal dispersal, bistable traveling waves, stability

中图分类号: 

  • O175
[1] 叶其孝,李正元,王明新,等. 反应扩散方程引论[M]. 2版. 北京:科学出版社,2011. YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations [M]. 2nd ed. Beijing: Science Press, 2011.
[2] HSU C H, YANG T S. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models [J]. Nonlinearity, 2013, 26:121-139.
[3] ARONSON D G, WEINBERGER H F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[M] //Lecture Notes in Mathematics. Berlin:Springer, 1975:5-49.
[4] BATES P W, FIFE P C, REN Xiao feng, et al. Traveling waves in a convolution model for phase transitions[J]. Archive for Rational Mechanics and Analysis, 1997, 138(2):105-136.
[5] YU Zhixian, WAN Yuji, HSU Cheng-hsiung. Wave propagation and its stability for a class of discrete diffusion systems[J]. Zeitschrift Für Angewandte Mathematik und Physik, 2020, 71(6):194.
[6] XU Dashun, ZHAO Xiaoqiang. Bistable waves in an epidemic model[J]. Journal of Dynamics and Differential Equations, 2004, 16(3):679-707.
[7] 吴事良. 非局部时滞反应扩散方程的行波解和渐近传播速度[D]. 西安:西安电子科技大学,2009. WU Shiliang. Traveling wave solutions and asymptotic propagation velocity of nonlocal delay reaction-diffusion equations[D]. Xian:Xidian University, 2009
[8] COVILLE Jérôme, DUPAIGNE Louis. Propagation speed of travelling fronts in non local reaction-diffusion equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60(5):797-819.
[9] COVILLE Jérôme. On uniqueness and monotonicity of solutions of non-local reaction diffusion equation[J]. Annali Di Matematica Pura Ed Applicata, 2006, 185(3):461-485.
[10] 李孝武,杨赟瑞,刘凯凯. 一类时滞非局部扩散SVIR模型单稳行波解的稳定性[J]. 浙江大学学报(理学版),2023,50(3):273-286. LI Xiaowu, YANG Yunrui, LIU Kaikai. Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay[J]. Journal of Zhejiang University(Science Edition), 2023, 50(3):273-286.
[11] ZHANG Guobao, ZHAO Xiaoqiang. Propagation phenomena for a two-species Lotka-Volterra strong competition system with nonlocal dispersal[J]. Calculus of Variations and Partial Differential Equations, 2019, 59(1):10.
[12] 郝玉财. 两类非局部扩散系统行波解的稳定性[D]. 兰州:西北师范大学,2022. HAO Yucai. Stability of traveling wave solutions for two kinds of nonlocal diffusion systems[D]. Lanzhou:Northwest Normal University, 2022.
[13] CHEN Xinfu. Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations[J]. Advances in Differential Equations, 1997, 2(1):125-160.
[14] HAO Yucai, ZHANG Guobao. Global stability of bistable traveling wavefronts for a three-species Lotka-Volterra competition system with nonlocal dispersal[J]. International Journal of Biomathematics, 2023, 16(5):22250106.
[15] LIU Kaikai, YANG Yunrui. Global stability of traveling waves for a SIR model with nonlocal dispersal and delay[J]. Journal of Mathematical Physics, 2022, 63(2):021504.
[16] YANG Lu, YANG Yunrui, SONG Xue. Traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal[J]. Acta Mathematica Scientia, 2022, 42(2):715-736.
[17] COVILLE Jérôme. Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases[J]. Prépublication du CMM, Hal-00696208.
[18] COVILLE Jérôme, DÁVILA Juan, MARTÍNEZ Salomé. Nonlocal anisotropic dispersal with monostable nonlinearity[J]. Journal of Differential Equations, 2008, 244(12):3080-3118.
[19] LI Wantong, XU Wenbing, ZHANG Liang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal[J]. Discrete and Continuous Dynamical Systems, 2017, 37(5):2483-2512.
[20] HU Ruyue, LI Wantong, XU Wenbing. Propagation phenomena for man-environment epidemic model with nonlocal dispersals[J]. Journal of Nonlinear Science, 2022, 32(5):67.
[21] 杨璐. 两类时滞非局部扩散传染病系统的行波解研究[D]. 兰州:兰州交通大学,2022. YANG Lu. Study on traveling wave solutions of two kinds of non-local diffusion infectious disease systems with time delay[D]. Lanzhou: Lanzhou Jiatong University, 2022.
[22] WENG Peixuan, ZHAO Xiaoqiang. Spreading speed and traveling waves for a multi-type SIS epidemic model[J]. Journal of Differential Equations, 2006, 229(1):270-296.
[23] 王高雄. 常微分方程[M]. 3版. 北京:高等教育出版社,2006. Wang Gaoxiong. Ordinary differential equation[M]. 3rd ed. Beijing: Higher Education Press, 2006.
[24] ZHAO Xiaoqiang. Dynamical systems in population biology[M]. New York: Springer, 2003.
[1] 买阿丽,孙国伟. 捕食者斑块间扩散的集合种群模型的稳定性分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 20-28.
[2] 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83.
[3] 苗卉,夏米西努尔·阿布都热合曼. 具有胞间传播和蛋白酶抑制剂的时滞HIV模型的动力学分析[J]. 《山东大学学报(理学版)》, 2024, 59(4): 90-97.
[4] 阿迪力·艾力,开依沙尔·热合曼. 求解广义Burgers-Fisher方程的微分求积法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 30-39.
[5] 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88.
[6] 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103.
[7] 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91.
[8] 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81.
[9] 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59.
[10] 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96.
[11] 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28.
[12] 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53.
[13] 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126.
[14] 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96.
[15] 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!