您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 6-12.doi: 10.6040/j.issn.1671-9352.0.2023.503

• • 上一篇    

零乘积确定代数的一些注记

潘绍泽1,苏珊珊2   

  1. 1.无锡学院理学院, 江苏 无锡 214105;2.华东理工大学数学学院, 上海 200237
  • 发布日期:2025-07-25
  • 作者简介:潘绍泽(1993— ),男,讲师,博士,研究方向为算子理论与算子代数. E-mail:panshaoze684@gmail.com
  • 基金资助:
    无锡学院引进人才科研启动专项经费资助;国家自然科学基金面上资助项目(11871021)

A note on zero product determined algebras

PAN Shaoze1, SU Shanshan2   

  1. 1. School of Science, Wuxi University, Wuxi 214105, Jiangsu, China;
    2. School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
  • Published:2025-07-25

摘要: 主要证明几类代数具有零Lie乘积确定性质。首先,给出零乘积确定性质的一些等价刻画并给出一个应用;其次,证明三角UHF代数,可数维局部矩阵代数以及由J -子空间格中的有限秩算子构成的代数都具有零Lie乘积确定性质;此外,还进一步研究在一些映射下代数零乘积确定性质的保持问题,并给出一些反例。

关键词: 零乘积确定代数, 零Lie乘积确定代数, 非自伴代数

Abstract: This paper primarily demonstrates that several classes of algebras possess the property of zero Lie product determinacy. Firstly, it provides some equivalent characterizations of zero product determinacy along with an application. Secondly, we prove that the triangular UHF algebras, countable dimensional locally matrix algebra, and algebras consisting of finite rank operators in J -subspace lattices are all zero Lie product determined. Furthermore, the paper explores the preservationof the zero product determinacy property under certain mappings and presents several counterexamples.

Key words: zero product determined algebra, zero Lie product determined algebra, non-self-adjoint algebra

中图分类号: 

  • O177.1
[1] ALAMINOS J, EXTREMERA J, VILLENA R, et al. Characterizing homomorphisms and derivations on C*-algebras[J]. Proc R Soc Edinburg Sect, 2007, 137(1):1-7.
[2] BREŠAR M, ŠEMEL P. On bilinear maps on matrices with applications to commutativity preservers[J]. J Algebra, 2006, 301(2):803-837.
[3] BREŠAR M. Zero product determined algebras[M]. Berlin: Springer, 2021:33-58.
[4] 陈全园. 算子代数的自反性及其上的若干映射的研究[D]. 上海:同济大学,2012. CHEN Quanyuan. A study of reflexivity of operator algebras and several mappings on them[D]. Shanghai: Tongji University, 2012.
[5] SAMEI E. Local properties of the Hochschild cohomology of C*-algebras[J]. J Aust Math Soc, 2008, 84:117-130.
[6] WOGEN W. Some counterexamples in nonselfadjoint algebras[J]. Ann Math, 1987, 126(2):415-427.
[7] MARCOUX L, POPOV A. Abelian, amenable operator algebras are similar to C*-algebras[J]. Duke Math J, 2016, 165(12):2391-2406.
[8] ALAMINOS J, BREŠAR M, EXTREMERA J, et al. Zero Lie product determined Banach algebras II[J]. J Math Anal Appl, 2019, 474:1498-1511.
[9] GHAHRAMANI H, FALLAHI K, KHODAKARAMI W. A note on zero Lie product determined nest algebras as Banach algebras[J]. Wavelet and Linear Algebra, 2021, 8:1-6.
[10] KÖTHE G. Schiefkörper unendlichen Ranges über dem Zentrum[J]. Math Ann, 1931, 105:15-39.
[11] LONGSTAFF W, NATION J, PANAIA O. Abstract reflexive sublattices and completely distributive collapsibility[J]. Bull Austral Math Soc, 1998, 58:245-260.
[12] LONGSTAFF W, PANAIA O. J-subspace lattices and subspace M-bases[J]. Studia Math, 2000, 139:197-212.
[13] LU Fangyan, LI Pengtong. Algebraic isomorphisms and Jordan derivations of J-subspace lattice algebras[J]. Studia Math, 2003, 158:287-301.
[14] CHEN Lin, LU Fangyan. Local maps of JSL algebras[J]. Complex Anal Oper Theory, 2019, 13:1661-1674.
[15] MURATOV M, CHILIN V. Topological algebras of measurable and locally measurable operators[J]. J Math Sci, 2019, 239:654-705.
[16] BAJUK Z, BREŠAR M. Two-sided zero product determined algebras[J]. Linear Algebra Appl, 2022, 643:125-136.
[1] 庞永锋,李奔. Hilbert空间中数值域半径[J]. 《山东大学学报(理学版)》, 2024, 59(8): 34-41.
[2] 张晨,余维燕. 算子P+QP的数值域[J]. 《山东大学学报(理学版)》, 2023, 58(6): 92-98.
[3] 冯高慧子,曹小红. 有界线性算子的a-Weyl定理的判定[J]. 《山东大学学报(理学版)》, 2020, 55(10): 88-94.
[4] 李春芳,孟彬. 测度框架的若干性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 99-104.
[5] 武鹂,张建华. 三角代数上Lie积为平方零元的非线性Jordan可导映射[J]. 山东大学学报(理学版), 2017, 52(12): 42-47.
[6] 张巧卫,郭志华,曹怀信. 拓扑效应代数[J]. 山东大学学报(理学版), 2017, 52(10): 97-103.
[7] 王丽丽,陈峥立. 关于Wigner-Yanase-Dyson斜信息的一些研究[J]. 山东大学学报(理学版), 2017, 52(8): 43-47.
[8] 王晓霞,曹怀信,查嫽. 量子信道对广义纠缠鲁棒性的影响[J]. 山东大学学报(理学版), 2016, 51(11): 127-134.
[9] 付丽娜,张建华. B(X)上Lie中心化子的刻画[J]. 山东大学学报(理学版), 2016, 51(8): 10-14.
[10] 梁文婷,陈峥立. 张量积空间上的强可分算子和弱可分算子[J]. 山东大学学报(理学版), 2016, 51(4): 19-24.
[11] 张芳娟. 广义矩阵代数上的非线性Lie中心化子[J]. 山东大学学报(理学版), 2015, 50(12): 10-14.
[12] 杨源, 张建华. B(H)上中心化子的一个局部特征[J]. 山东大学学报(理学版), 2015, 50(12): 1-4.
[13] 李俊, 张建华, 陈琳. 三角Banach代数上的对偶模Jordan导子和对偶模广义导子[J]. 山东大学学报(理学版), 2015, 50(10): 76-80.
[14] 孟娇, 吉国兴. 标准算子代数上保因子的可加映射[J]. 山东大学学报(理学版), 2015, 50(08): 20-23.
[15] 孔亮, 曹怀信. ε-近似保平方等腰正交映射的刻画与扰动[J]. 山东大学学报(理学版), 2015, 50(06): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!