《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 86-94.doi: 10.6040/j.issn.1671-9352.0.2023.433
• • 上一篇
李雪梅,张铮,逯光辉*Symbol`@@
LI Xuemei, ZHANG Zheng, LU Guanghui*
摘要: 主要讨论参数型面积积分μρΩ,S、参数型Littlewood-Paley g*λ-函数μ*, ρΩ,λ及其分别与BMO函数生成的高阶交换子在与球拟Banach函数空间相关的广义Morrey空间Mu(X)上的有界性。
中图分类号:
[1] JIA H C, YANG D C, YUAN W, et al. Estimates for Littlewood-Paley operators on ball campanato-type function spaces[J]. Results in Mathematics, 2022, 78(1):37. [2] YAN X J, HE Z Y, YANG D C, et al. Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Littlewood-Paley characterizations with applications to boundedness of Calderón-Zygmund operators[J]. Acta Math Sin, 2022, 38(7):1133-1184. [3] YAREMENKO M. Application of the Littlewood-Paley method to Calderón-Zygmund operators[J]. Surv Math Appl, 2022, 17(1):431-445. [4] WANG M M, MA S X, LU G H. Littlewood-Paley g*λ, μ-function and its commutator on non-homogeneous generalized Morrey spaces[J]. Tokyo J Math, 2018, 41(2):617-626. [5] LI Z Y, XUE Q Y. Boundedness of bi-parameter Littlewood-Paley operators on product Hardy space[J]. Rev Mat Comput, 2018, 31:713-745. [6] HÖRMANDER L. Estimates for translation invariant operators Lp spaces[J]. Acta Math, 1960, 104(1):93-140. [7] XUE Q Y, DING Y. Weighted Lp boundedness for parametrized Littlewood-Paley operators[J]. Taiwanese J Math, 2007, 11(4):1143-1165. [8] 薛庆营,张钜玚,李文娟. 具有非倍测度的Littlewood-Paley g*λ函数的多线性交换子的端点估计[J]. 数学学报,2011, 54(3):353-372. XUE Qingying, ZHANG Juyang, LI Wenjuan. Endpoint estimates for the multilinear commutators of Littlewood-Paley g*λ function with non-doubling measure[J]. Acta Mathematica Sinica, 2011, 54(3):353-372. [9] HE S, XUE Q Y. Parametrized multilinear Littlewood-Paley operators on Hardy spaces[J]. Taiwanese J Math, 2019, 23(1):87-101. [10] WANG L W. Parametrized Littlewood-Paley operators on grand variable Herz spaces[J]. Ann Funct Anal, 2022, 13(4):1-26. [11] LU G H. Some estimates for commutators of Littlewood-Paley g-functions[J]. Open Math, 2021, 19(1):888-897. [12] LU G H, TAO S P. Generalized homogeneous Littlewood-Paley g-function on some function spaces[J]. Bull Malays Math Sci Soc, 2020, 44:17-34. [13] 史鹏伟,陶双平. 极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子[J]. 山东大学学报(理学版),2022,57(12):45-54. SHI Pengwei, TAO Shuangping. Parameterized Littlewood-Paley operators with rough kernel on grand variable Herz spaces[J]. Journal of Shandong University(Natural Science), 2022, 57(12):45-54. [14] WANG H B, WU Y H. Higher-order commutators of parametrized Littlewood-Paley operators on Herz spaces with variable exponent[J]. Transactions of A Razmadze Mathematical Institute, 2017, 171:238-251. [15] LIU X, YANG S B, WANG X X, et al. Parametrized Littlewood-Paley operators on Herz-type Hardy spaces with variable exponent[J]. Bull Malays Math Sci Soc, 2020, 43(6):4143-4169. [16] MORREY C. On the solutions of quasi-linear elliptic partial differential equations[J]. Trans Am Math Soc, 1938, 43(1):126-166. [17] LU G H. Parameter Marcinkiewicz integral on non-homogeneous Morrey space with variable exponent[J]. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys, 2021, 83(1):89-98. [18] WEI M Q. Mapping properties for operators on Herz-Morrey-Hardy spaces[J]. J Pseudo-Differ Oper Appl, 2023, 14(1):1-27. [19] 芮俪,逯光辉,李雪梅. 广义加权变指标Morrey空间上双线性θ-型Calderón-Zygmund算子[J]. 山东大学学报(理学版),2024,59(4):62-72. RUI Li, LU Guanghui, LI Xuemei. Bilinear θ-type Calderón-Zygmund operators on generalized weighted variable exponent Morrey spaces[J]. Journal of Shandong University(Natural Science), 2024, 59(4):62-72. [20] BENNETT C, SHARPLEY R. Interpolation of operators[M]. Pure Appl Math, 1988:1-469. [21] SAWANO Y, HO K, YANG D C, et al. Hardy spaces for ball quasi-Banach function spaces[J]. Dissertationes Mathematicae, 2017, 525:1-102. [22] WANG F, YANG D C, YANG S B. Applications of Hardy spaces associated with ball quasi-Banach function spaces[J]. Results in Mathematics, 2020, 75(1):26. [23] ZHANG Y Y, YANG D C, YUAN W, et al. Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: decompositions with applications to boundedness of Calderón-Zygmund operators[J]. Science China Mathematics, 2021, 64(9):2007-2064. [24] HO K P. Strongly singular Calderón-Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces[J]. Analysis and Mathematical Physics, 2023, 13(5):67. [25] SUN J S, YANG D C, YUAN W. Weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: decompositions, real interpolation, and Calderón-Zygmund operators[J]. The Journal of Geometric Analysis, 2022, 32(7):191. [26] SUN J S, YANG D C, YUAN W. Molecular characterization of weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type with its applications to Littlewood-Paley function characterizations[J]. Forum Math, 2022, 34(6):1539-1589. [27] CHEN Y Q, JIA H C, YANG D C. Boundedness of fractional integrals on ball Campanato-type function spaces[J]. Bull Sci Math, 2023, 182(1):1-59. [28] WEI M Q. Linear operators and their commutators generated by Calderón-Zygmund operators on generalized Morrey spaces associated with ball Banach function spaces[J]. Positivity, 2022, 26(5):84. [29] SOBOLEV S L. On a theorem in functional analysis[J]. Mat Sbo, 1938, 4:471-479. [30] HO K P. Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces[J]. Analysis Mathematica, 2012, 38(3):173-185. [31] HO K P. Definability of singular integral operators on Morrey-Banach spaces[J]. Journal of the Mathematical Society of Japan, 2020, 72(1):155-170. [32] SAKAMOTO M, YABUTA K. Boundedness of Marcinkiewicz functions[J]. Studia Mathematica, 1999, 135(2):103-142. |
[1] | 刘占宏,陶双平. 分数次极大算子及交换子在Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2024, 59(6): 108-115. |
[2] | 芮俪,逯光辉,李雪梅. 广义加权变指标Morrey空间上双线性θ-型Calderón-Zygmund算子[J]. 《山东大学学报(理学版)》, 2024, 59(4): 62-72. |
[3] | 郑宇洁,刘爱芳. 局部交换子及其酉系统中的r-重游荡算子[J]. 《山东大学学报(理学版)》, 2024, 59(2): 120-126. |
[4] | 韦营营,张婧. Marcinkiewicz积分交换子在变指标Herz Triebel-Lizorkin空间的有界性[J]. 《山东大学学报(理学版)》, 2022, 57(12): 55-63. |
[5] | 史鹏伟,陶双平. 极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子[J]. 《山东大学学报(理学版)》, 2022, 57(12): 45-54. |
[6] | 辛银萍. 参数型Marcinkiewicz积分交换子在变指数Herz-Morrey空间的加权有界性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 66-75. |
[7] | 王敏,方小珍,瞿萌,束立生. 多线性Hardy-Littlewood极大算子交换子的有界性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 16-22. |
[8] | 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75. |
[9] | 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50. |
[10] | 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58. |
[11] | 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105. |
[12] | 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110. |
[13] | 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18. |
[14] | 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016, 51(10): 1-5. |
[15] | 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10. |
|