您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 86-94.doi: 10.6040/j.issn.1671-9352.0.2023.433

• • 上一篇    

与球拟Banach函数空间相关的广义Morrey空间上参数型Littlewood-Paley算子及高阶交换子

李雪梅,张铮,逯光辉*Symbol`@@   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-07-25
  • 通讯作者: 逯光辉(1987— ),男,副教授,博士,研究方向为调和分析. E-mail:luguanghui@nwnu.edu.cn
  • 作者简介:李雪梅(1996— ),女,硕士研究生,研究方向为调和分析. E-mail:18706903860@163.com*通信作者:逯光辉(1987— ),男,副教授,博士,研究方向为调和分析. E-mail:luguanghui@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12201500,12361018);甘肃省青年科技基金计划项目(22JR5RA173);西北师范大学2022年度研究生科研资助项目(2022KYZZ-S121)

Parametrized Littlewood-Paley operators and their higher order commutators on generalized Morrey spaces associated with ball quasi-Banach function spaces

LI Xuemei, ZHANG Zheng, LU Guanghui*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-07-25

摘要: 主要讨论参数型面积积分μρΩ,S、参数型Littlewood-Paley g*λ-函数μ*, ρΩ,λ及其分别与BMO函数生成的高阶交换子在与球拟Banach函数空间相关的广义Morrey空间Mu(X)上的有界性。

关键词: 球拟Banach函数空间, 参数型Littlewood-Paley算子, 广义Morrey空间, 交换子, 有界性

Abstract: In this paper, the authors mainly discuss the boundedness of parametrized area integral μρΩ,S and parametrized Littlewood-Paley g*λ-function μ*, ρΩ,λ and their higher order commutators [bm, μρΩ,S and [bm, μ*, ρΩ,λ generated by b∈BMO and μρΩ,S、 g*λ-function μ*, ρΩ,λ on generalized Morrey spaces associated with ball quasi-Banach function spaces Mu(X).

Key words: ball quasi-Banach function spaces, parametrized Littlewood-Paley operator, generalized Morrey space, commutator, boundedness

中图分类号: 

  • O174.2
[1] JIA H C, YANG D C, YUAN W, et al. Estimates for Littlewood-Paley operators on ball campanato-type function spaces[J]. Results in Mathematics, 2022, 78(1):37.
[2] YAN X J, HE Z Y, YANG D C, et al. Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Littlewood-Paley characterizations with applications to boundedness of Calderón-Zygmund operators[J]. Acta Math Sin, 2022, 38(7):1133-1184.
[3] YAREMENKO M. Application of the Littlewood-Paley method to Calderón-Zygmund operators[J]. Surv Math Appl, 2022, 17(1):431-445.
[4] WANG M M, MA S X, LU G H. Littlewood-Paley g*λ, μ-function and its commutator on non-homogeneous generalized Morrey spaces[J]. Tokyo J Math, 2018, 41(2):617-626.
[5] LI Z Y, XUE Q Y. Boundedness of bi-parameter Littlewood-Paley operators on product Hardy space[J]. Rev Mat Comput, 2018, 31:713-745.
[6] HÖRMANDER L. Estimates for translation invariant operators Lp spaces[J]. Acta Math, 1960, 104(1):93-140.
[7] XUE Q Y, DING Y. Weighted Lp boundedness for parametrized Littlewood-Paley operators[J]. Taiwanese J Math, 2007, 11(4):1143-1165.
[8] 薛庆营,张钜玚,李文娟. 具有非倍测度的Littlewood-Paley g*λ函数的多线性交换子的端点估计[J]. 数学学报,2011, 54(3):353-372. XUE Qingying, ZHANG Juyang, LI Wenjuan. Endpoint estimates for the multilinear commutators of Littlewood-Paley g*λ function with non-doubling measure[J]. Acta Mathematica Sinica, 2011, 54(3):353-372.
[9] HE S, XUE Q Y. Parametrized multilinear Littlewood-Paley operators on Hardy spaces[J]. Taiwanese J Math, 2019, 23(1):87-101.
[10] WANG L W. Parametrized Littlewood-Paley operators on grand variable Herz spaces[J]. Ann Funct Anal, 2022, 13(4):1-26.
[11] LU G H. Some estimates for commutators of Littlewood-Paley g-functions[J]. Open Math, 2021, 19(1):888-897.
[12] LU G H, TAO S P. Generalized homogeneous Littlewood-Paley g-function on some function spaces[J]. Bull Malays Math Sci Soc, 2020, 44:17-34.
[13] 史鹏伟,陶双平. 极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子[J]. 山东大学学报(理学版),2022,57(12):45-54. SHI Pengwei, TAO Shuangping. Parameterized Littlewood-Paley operators with rough kernel on grand variable Herz spaces[J]. Journal of Shandong University(Natural Science), 2022, 57(12):45-54.
[14] WANG H B, WU Y H. Higher-order commutators of parametrized Littlewood-Paley operators on Herz spaces with variable exponent[J]. Transactions of A Razmadze Mathematical Institute, 2017, 171:238-251.
[15] LIU X, YANG S B, WANG X X, et al. Parametrized Littlewood-Paley operators on Herz-type Hardy spaces with variable exponent[J]. Bull Malays Math Sci Soc, 2020, 43(6):4143-4169.
[16] MORREY C. On the solutions of quasi-linear elliptic partial differential equations[J]. Trans Am Math Soc, 1938, 43(1):126-166.
[17] LU G H. Parameter Marcinkiewicz integral on non-homogeneous Morrey space with variable exponent[J]. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys, 2021, 83(1):89-98.
[18] WEI M Q. Mapping properties for operators on Herz-Morrey-Hardy spaces[J]. J Pseudo-Differ Oper Appl, 2023, 14(1):1-27.
[19] 芮俪,逯光辉,李雪梅. 广义加权变指标Morrey空间上双线性θ-型Calderón-Zygmund算子[J]. 山东大学学报(理学版),2024,59(4):62-72. RUI Li, LU Guanghui, LI Xuemei. Bilinear θ-type Calderón-Zygmund operators on generalized weighted variable exponent Morrey spaces[J]. Journal of Shandong University(Natural Science), 2024, 59(4):62-72.
[20] BENNETT C, SHARPLEY R. Interpolation of operators[M]. Pure Appl Math, 1988:1-469.
[21] SAWANO Y, HO K, YANG D C, et al. Hardy spaces for ball quasi-Banach function spaces[J]. Dissertationes Mathematicae, 2017, 525:1-102.
[22] WANG F, YANG D C, YANG S B. Applications of Hardy spaces associated with ball quasi-Banach function spaces[J]. Results in Mathematics, 2020, 75(1):26.
[23] ZHANG Y Y, YANG D C, YUAN W, et al. Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: decompositions with applications to boundedness of Calderón-Zygmund operators[J]. Science China Mathematics, 2021, 64(9):2007-2064.
[24] HO K P. Strongly singular Calderón-Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces[J]. Analysis and Mathematical Physics, 2023, 13(5):67.
[25] SUN J S, YANG D C, YUAN W. Weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: decompositions, real interpolation, and Calderón-Zygmund operators[J]. The Journal of Geometric Analysis, 2022, 32(7):191.
[26] SUN J S, YANG D C, YUAN W. Molecular characterization of weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type with its applications to Littlewood-Paley function characterizations[J]. Forum Math, 2022, 34(6):1539-1589.
[27] CHEN Y Q, JIA H C, YANG D C. Boundedness of fractional integrals on ball Campanato-type function spaces[J]. Bull Sci Math, 2023, 182(1):1-59.
[28] WEI M Q. Linear operators and their commutators generated by Calderón-Zygmund operators on generalized Morrey spaces associated with ball Banach function spaces[J]. Positivity, 2022, 26(5):84.
[29] SOBOLEV S L. On a theorem in functional analysis[J]. Mat Sbo, 1938, 4:471-479.
[30] HO K P. Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces[J]. Analysis Mathematica, 2012, 38(3):173-185.
[31] HO K P. Definability of singular integral operators on Morrey-Banach spaces[J]. Journal of the Mathematical Society of Japan, 2020, 72(1):155-170.
[32] SAKAMOTO M, YABUTA K. Boundedness of Marcinkiewicz functions[J]. Studia Mathematica, 1999, 135(2):103-142.
[1] 刘占宏,陶双平. 分数次极大算子及交换子在Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2024, 59(6): 108-115.
[2] 芮俪,逯光辉,李雪梅. 广义加权变指标Morrey空间上双线性θ-型Calderón-Zygmund算子[J]. 《山东大学学报(理学版)》, 2024, 59(4): 62-72.
[3] 郑宇洁,刘爱芳. 局部交换子及其酉系统中的r-重游荡算子[J]. 《山东大学学报(理学版)》, 2024, 59(2): 120-126.
[4] 韦营营,张婧. Marcinkiewicz积分交换子在变指标Herz Triebel-Lizorkin空间的有界性[J]. 《山东大学学报(理学版)》, 2022, 57(12): 55-63.
[5] 史鹏伟,陶双平. 极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子[J]. 《山东大学学报(理学版)》, 2022, 57(12): 45-54.
[6] 辛银萍. 参数型Marcinkiewicz积分交换子在变指数Herz-Morrey空间的加权有界性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 66-75.
[7] 王敏,方小珍,瞿萌,束立生. 多线性Hardy-Littlewood极大算子交换子的有界性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 16-22.
[8] 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75.
[9] 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50.
[10] 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58.
[11] 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105.
[12] 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110.
[13] 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18.
[14] 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016, 51(10): 1-5.
[15] 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!