您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (2): 79-87.doi: 10.6040/j.issn.1671-9352.0.2022.094

• • 上一篇    

(n,d)-phantom与(n,d)-Ext-phantom态射

张春霞,唐强玲   

  1. 重庆师范大学数学科学学院, 重庆 401331
  • 发布日期:2023-02-12
  • 作者简介:张春霞(1979— ), 女, 博士, 教授, 主要研究方向为同调代数理论. E-mail:cxzhang@cqnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11871125);重庆市自然科学基金资助项目(cstc2021jcyj-msxmX0048)

On (n,d)-phantom and (n,d)-Ext-phantom morphisms

ZHANG Chun-xia, TANG Qiang-ling   

  1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
  • Published:2023-02-12

摘要: n,d是非负整数且n≥1,引入了(n,d)-phantom态射与(n,d)-Ext-phantom态射的概念,研究了它们的一些性质。作为应用,得到了模的FPn-平坦维数与FPn-内射维数的一些新刻画。

关键词: n-凝聚环, (n,d)-Tor-满态射, (n,d)-phantom态射, (n,d)-Ext-单态射, (n,d)-Ext-phantom态射

Abstract: Let n,d be nonnegative integers and n≥1, we introduce the concepts of(n,d)-phantom and(n,d)-Ext-phantom morphisms, and give their some properties. As applications, we obtain some new characterizations of the FPn-flat and FPn-injective dimensions of modules.

Key words: n-coherent ring, (n,d)-Tor-epimorphism, (n,d)-phantom morphism, (n,d)-Ext-monomorphism, (n,d)-Ext-phantom morphism

中图分类号: 

  • O153.3
[1] FU X H, GUIL ASENSIO P A, HERZOG I, et al. Ideal approximation theory[J]. Adv Math, 2013, 244:750-790.
[2] AUSLANDER M, SMALØ S. Preprojective modules over artin algebras[J]. J Algebra, 1980, 66:61-122.
[3] ENOCHS E E. Injective and flat covers, envelopes and resolvents[J]. Israel J Math, 1981, 39:189-209.
[4] HERZOG I. The phantom cover of a module[J]. Adv Math, 2007, 215:220-249.
[5] HERZOG I. Contravariant functors on the category of finitely presented modules[J]. Israel J Math, 2008, 167:347-410.
[6] FU X H, HERZOG I. Powers of the phantom ideal[J]. Proc London Math Soc, 2016, 112:714-752.
[7] ESTRADA S, GUIL ASENSIO P A, OZBEK F. Covering ideals of morphisms and module representations of the quiverEuclid Math TwoAA@2[J]. J Pure Appl Algebra, 2014, 218:1953-1963.
[8] MAO L X. Higher phantom morphisms with respect to a subfunctor of Ext[J]. Algebra Represent Theor, 2019, 22:407-424.
[9] BRAVO D, PÉREZ M A. Finiteness conditions and cotorsion pairs[J]. J Pure Appl Algebra, 2017, 221:1249-1267.
[10] ZHAO T W, PÉREZ M A. Relative FP-injective and FP-flat complexes and their model structures[J]. Comm Algebra, 2019, 47:1708-1730.
[11] COSTA D L. Parameterizing families of non-noetherian rings[J]. Comm Algebra, 1994, 22:3997-4011.
[12] TAN L L, WANG D G, ZHAO T W. Finiteness conditions and relative derived categories[J]. J Algebra, 2021, 573:270-296.
[13] LAN K Y, LU B. On n-phantom and n-Ext-phantom morphisms[J]. Taiwanese J Math, 2021, 25(5):941-957.
[14] MAO L X. Higher phantom and Ext-phantom morphisms[J]. J Algebra Appl, 2018, 17(1):1850012, 15 pp.
[15] HOLM H, JØRGENSEN P. Cotorsion pairs induced by duality pairs[J]. Comm Algebra, 2009, 1(4):621-633.
[16] ZHOU D X. On n-coherent rings and(n,d)-rings[J]. Comm Algebra, 2004, 32(6):2425-2441.
[17] AUSLANDER M, SOLBERG O. Relative homology and representation theory I, relative homology and homologically finite categories[J]. Comm Algebra, 1993, 21:2995-3031.
[18] ZHU Z M. On n-coherent rings, n-hereditary rings and n-regular rings[J]. Bull Iran Math Soc, 2011, 37:251-267.
[1] 尹俊琦, 杨刚. Gorenstein DG-内射复形[J]. 《山东大学学报(理学版)》, 2022, 57(10): 28-33.
[2] 赵跳,章超. 自内射Nakayama代数的q-Cartan矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(10): 46-51.
[3] 郭慧瑛,张翠萍. Ext-强Ding投射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 31-36.
[4] 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45.
[5] 张翠萍,刘雅娟. 强Gorenstein C-内射模和强Gorenstein C-平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 24-30.
[6] 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107.
[7] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26.
[8] 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15.
[9] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8.
[10] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[11] 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24.
[12] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[13] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[14] 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23.
[15] 孙彦中,杨晓燕. 相对于半对偶模的Gorenstein AC-投射模[J]. 山东大学学报(理学版), 2017, 52(10): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!