《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (2): 79-87.doi: 10.6040/j.issn.1671-9352.0.2022.094
• • 上一篇
张春霞,唐强玲
ZHANG Chun-xia, TANG Qiang-ling
摘要: 设n,d是非负整数且n≥1,引入了(n,d)-phantom态射与(n,d)-Ext-phantom态射的概念,研究了它们的一些性质。作为应用,得到了模的FPn-平坦维数与FPn-内射维数的一些新刻画。
中图分类号:
[1] FU X H, GUIL ASENSIO P A, HERZOG I, et al. Ideal approximation theory[J]. Adv Math, 2013, 244:750-790. [2] AUSLANDER M, SMALØ S. Preprojective modules over artin algebras[J]. J Algebra, 1980, 66:61-122. [3] ENOCHS E E. Injective and flat covers, envelopes and resolvents[J]. Israel J Math, 1981, 39:189-209. [4] HERZOG I. The phantom cover of a module[J]. Adv Math, 2007, 215:220-249. [5] HERZOG I. Contravariant functors on the category of finitely presented modules[J]. Israel J Math, 2008, 167:347-410. [6] FU X H, HERZOG I. Powers of the phantom ideal[J]. Proc London Math Soc, 2016, 112:714-752. [7] ESTRADA S, GUIL ASENSIO P A, OZBEK F. Covering ideals of morphisms and module representations of the quiverEuclid Math TwoAA@2[J]. J Pure Appl Algebra, 2014, 218:1953-1963. [8] MAO L X. Higher phantom morphisms with respect to a subfunctor of Ext[J]. Algebra Represent Theor, 2019, 22:407-424. [9] BRAVO D, PÉREZ M A. Finiteness conditions and cotorsion pairs[J]. J Pure Appl Algebra, 2017, 221:1249-1267. [10] ZHAO T W, PÉREZ M A. Relative FP-injective and FP-flat complexes and their model structures[J]. Comm Algebra, 2019, 47:1708-1730. [11] COSTA D L. Parameterizing families of non-noetherian rings[J]. Comm Algebra, 1994, 22:3997-4011. [12] TAN L L, WANG D G, ZHAO T W. Finiteness conditions and relative derived categories[J]. J Algebra, 2021, 573:270-296. [13] LAN K Y, LU B. On n-phantom and n-Ext-phantom morphisms[J]. Taiwanese J Math, 2021, 25(5):941-957. [14] MAO L X. Higher phantom and Ext-phantom morphisms[J]. J Algebra Appl, 2018, 17(1):1850012, 15 pp. [15] HOLM H, JØRGENSEN P. Cotorsion pairs induced by duality pairs[J]. Comm Algebra, 2009, 1(4):621-633. [16] ZHOU D X. On n-coherent rings and(n,d)-rings[J]. Comm Algebra, 2004, 32(6):2425-2441. [17] AUSLANDER M, SOLBERG O. Relative homology and representation theory I, relative homology and homologically finite categories[J]. Comm Algebra, 1993, 21:2995-3031. [18] ZHU Z M. On n-coherent rings, n-hereditary rings and n-regular rings[J]. Bull Iran Math Soc, 2011, 37:251-267. |
[1] | 尹俊琦, 杨刚. Gorenstein DG-内射复形[J]. 《山东大学学报(理学版)》, 2022, 57(10): 28-33. |
[2] | 赵跳,章超. 自内射Nakayama代数的q-Cartan矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(10): 46-51. |
[3] | 郭慧瑛,张翠萍. Ext-强Ding投射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 31-36. |
[4] | 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45. |
[5] | 张翠萍,刘雅娟. 强Gorenstein C-内射模和强Gorenstein C-平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 24-30. |
[6] | 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107. |
[7] | 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26. |
[8] | 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15. |
[9] | 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8. |
[10] | 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31. |
[11] | 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24. |
[12] | 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15. |
[13] | 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35. |
[14] | 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23. |
[15] | 孙彦中,杨晓燕. 相对于半对偶模的Gorenstein AC-投射模[J]. 山东大学学报(理学版), 2017, 52(10): 31-35. |
|