您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (11): 10-20.doi: 10.6040/j.issn.1671-9352.0.2022.125

• • 上一篇    

有界Heyting代数上基于理想的一致拓扑空间

刘春辉   

  1. 赤峰学院教育科学学院, 内蒙古 赤峰 024001
  • 发布日期:2022-11-10
  • 作者简介:刘春辉(1982— ),男,硕士,教授,研究方向为非经典数理逻辑、Domain理论及拓扑学. E-mail:chunhuiliu1982@163.com
  • 基金资助:
    内蒙古自治区高等学校科学研究项目(NJZY21138);赤峰学院一流扶持学科(数学及计算机科学与技术)建设专项经费资助项目

Uniform topological space base on ideals in bounded Heyting algebras

LIU Chun-hui   

  1. School of Educational Science, Chifeng University, Chifeng 024001, Inner Mongolia, China
  • Published:2022-11-10

摘要: 为了利用拓扑学工具研究有界Heyting代数的性质和结构问题,基于由理想概念诱导的一类同余关系在有界Heyting代数(H,≤,→,0,1)上构造一致拓扑空间(H,τ)并考察其基本性质和拓扑性质,证明了(H,τ)是非连通的局部连通局部紧零维第一可数的完全正则空间,(H,τ)T1空间当且仅当(H,τ)是Hausdorff空间,获得了(H,τ)成为离散空间和紧致空间的充要条件,指出了(H,≤,→,0,1)中格运算和蕴涵运算关于一致拓扑τ都是连续的,从而构成拓扑有界Heyting代数。同时,讨论了(H,τ)的商空间性质。

关键词: 有界Heyting代数, 理想, 一致拓扑空间, 商空间

Abstract: In order to study the properties and structure of bounded Heyting algebras by using topological tools, based on a type of congruences induced by the notion of ideal, uniform topological space (H,τ) is established and some of its basic and topological properties are investigated in bounded Heyting algebra (H,≤,→,0,1). It is proved that (H,τ) is disconnected, locally connected, locally compact, zero-dimensional, first-countable and completely regular space. Moreover (H,τ) is a T1 space if it is a Hausdorff space. Some necessary and sufficient conditions for (H,τ)to be discrete and compact space are obtained. It is showed that the lattice and implication operations in (H,≤,→,0,1) are continuous under the uniform topology τ, make (H,≤,→,0,1) to be a topological bounded Heyting algebra. Meanwhile, some properties of the quotient space of (H,τ) are discussed.

Key words: bounded Heyting algebra, ideal, uniform topological space, quotient space

中图分类号: 

  • O141.1
[1] 王国俊. 非经典数理逻辑与近似推理[M]. 北京: 科学出版社, 2003. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. Beijing: Science Press, 2003.
[2] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. 2nd ed. Beijing: Science Press, 2009.
[3] MICHIRO K, WIESLAW A D. Filter theory of BL-algebras[J]. Soft Computing, 2008, 12(5):419-423.
[4] LIU Lianzhen, LI Kaitai. Boolean filters and positive implicative filters of residuated lattices[J]. Information Sciences, 2007, 177(24):5725-5738.
[5] ZHU Yiquan, XU Yang. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180(19):3614-3632.
[6] VAN G, DESCHRIJVER G, CORNELIS C, et al. Filters of residuated lattices and triangle algebras[J]. Information Sciences, 2010, 180(16):3006-3020.
[7] 刘春辉. Heyting代数的扩张模糊滤子[J]. 山东大学学报(理学版), 2019, 54(2):57-65. LIU Chunhui. Expand fuzzy filters in Heyting algebras[J]. Journal of Shandong University(Natural Science), 2019, 54(2):57-65.
[8] 姚卫. Heyting代数中的滤子与同构定理及其范畴Heyt[D]. 西安: 陕西师范大学, 2005. YAO Wei. Filters and isomorphims theorems in Heyting algebra and its category Heyt[D]. Xian: Shaanxi Normal University, 2005.
[9] ZHANG Xiaohong, QIN Keyun, DUDEK W. Ultra LI-ideals in lattice implication algebras and MTL-algebras[J]. Czechoslovak Math Journal, 2007, 57(6):591-605.
[10] LELE C, NGANOU J B. MV-algebras derived from ideals in BL-algebras[J]. Fuzzy Sets and Systems, 2013, 218(5):103-113.
[11] LIU Yi, QIN Yao, QIN Xiaoyan, et al. Ideals and fuzzy ideals on residuated lattices[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1):239-253.
[12] VICKERS S. Topology via logic[M]. Cambridge: Cambridge University Press, 1996.
[13] 王国俊. Heyting代数成为Boole代数的条件及其特征[J]. 陕西师范大学学报(自然科学版), 1991, 19(4):1-6. WANG Guojun. The conditions for Heyting algebra to be Boole algebra and the characteristics of Heyting algebras[J]. Journal of Shaanxi Normal University(Nature Science Edition), 1991, 19(4):1-6.
[14] 贺伟. Heyting代数的谱空间[J]. 数学进展, 1998, 27(2):44-47. HE Wei. Spectrums of Heyting algebras[J]. Advances in Mathematics, 1998, 27(2):44-47.
[15] 徐晓泉,熊华平,杨金波. 近性Heyting代数[J]. 数学年刊: A辑, 2000, 21(2):165-174. XU Xiaoquan, XIONG Huaping, YANG Jinbo. Proximity Heyting algenras[J]. Chinese Annals of Mathematics: A, 2000, 21(2):165-174.
[16] 李志伟,郑崇友. Heyting代数与Fuzzy蕴涵代数[J]. 数学杂志, 2002, 22(2):237-240. LI Zhiwei, ZHENG Chongyou. Heyting algebras and Fuzzy implication algebras[J]. Journal of Mathematics, 2002, 22(2):237-240.
[17] 王习娟,贺伟. 关于topos中的内蕴Heyting代数对象[J]. 数学杂志, 2011, 31(6):979-998. WANG Xijuan, HE Wei. On the Heyting algebra objects in topos[J]. Journal of Mathematics, 2011, 31(6):979-998.
[18] 吴洪博,石慧君. Heyting系统及其H-Locale化形式[J]. 数学学报, 2012, 55(6):1119-1130. WU Hongbo, SHI Huijun. Heyting system and its H-Localification[J]. Acta Mathematica Sinica(Chinese Series), 2012, 55(6):1119-1130.
[19] 吴洪博, 石慧君. Heyting系统及其H-空间化表示形式[J]. 电子学报, 2012, 50(5):995-999. WU Hongbo, SHI Huijun. Heyting system and its representation by H-Spatilization[J]. Acta Electronica Sinica, 2012, 50(5):995-999.
[20] 郑崇友, 樊磊, 崔宏斌.Frame与连续格[M]. 北京: 首都师范大学出版社, 2000. ZHENG Chongyou, FAN Lei, CUI Hongbin. Frame and continuous lattices[M]. Beijing: Capital Normal University Press, 2000.
[21] 刘春辉. 有界Heyting代数及其理想理论[J]. 模糊系统与数学, 2022, 36(5):1-15. LIU Chunhui. Bounded Heyting algebras and its ideals theorey[J]. Fuzzy Systems and Mathematics, 2022, 36(5):1-15.
[22] 刘春辉. 有界Heyting代数的扩张LI-理想理论[J]. 浙江大学学报(理学版), 2021, 48(3):289-297. LIU Chunhui. Expand fuzzy LI-ideals in bounded Heyting algebras [J]. Journal of Zhejiang University(Science Edition), 2021, 48(3):289-297.
[23] 周红军. R0-代数上的滤子拓扑空间[J]. 山东大学学报(理学版), 2012, 47(4):110-115. ZHOU Hongjun. Filter topological spaces on R0-algebras[J]. Journal of Shandong University(Science Edition), 2012, 47(4):110-115.
[24] 罗清君. R0-代数中素滤子的拓扑性质[J]. 数学学报, 2008, 51(4):795-802. LUO Qingjun. Topological properties of prime filters in R0-algebras[J]. Acta Mathematica Sinica(Chinese Series), 2008, 51(4):795-802.
[25] LIU Chunhui, XU Luoshan. Prime MP-filter spaces of fuzzy implication algebras[J]. Chinese Quarterly Journal of Mathematics, 2012, 27(2):246-253.
[26] MAHMOOD B. Spectrum topology of a residuated lattices[J]. Fuzzy Information and Engineering, 2013, 5(2):159-172.
[27] 刘春辉. Fuzzy蕴涵代数的素模糊MP滤子[J]. 模糊系统与数学, 2014, 28(6):37-43. LIU Chunhui. Prime fuzzy MP-filters in fuzzy implica-tion algebras[J]. Fuzzy Systems and Mathematics, 2014, 28(6):37-43.
[28] KELLEY J L. General topology[M]. New York: Springer, 2001.
[29] 徐罗山, 毛徐新, 何青玉. 应用拓扑学基础[M]. 北京: 科学出版社, 2021. XU Luoshan, MAO Xuxin, HE Qingyu. Fundamentals of applied topology[M]. Beijing: Science Press, 2021.
[30] BLYTH T S, VARLET J C. Ockham algebras[M]. Oxford: Oxford University Press, 1994.
[31] KHANEGIR R, REZAEI G R, KOUHESTANI N. Uniform BL-algebras[J]. Soft Computing, 2019, 23(15):5991-6003.
[1] 卢诗展,刘媛媛,程龙生. 理想遗传不可解空间[J]. 《山东大学学报(理学版)》, 2022, 57(2): 92-97.
[2] 马广琳,王尧,任艳丽. JQ环的一些性质[J]. 《山东大学学报(理学版)》, 2021, 56(8): 32-38.
[3] 陈玲巧,唐国亮,狄振兴. (强)Kasch n阶三角矩阵环的等价刻画[J]. 《山东大学学报(理学版)》, 2021, 56(4): 25-30.
[4] 刘春辉. 非对合剩余格的犹豫模糊理想[J]. 《山东大学学报(理学版)》, 2021, 56(2): 7-16.
[5] 刘春辉,张海燕,李玉毛. 否定非对合剩余格的双极值模糊理想格[J]. 《山东大学学报(理学版)》, 2019, 54(9): 29-35.
[6] 刘春辉,李玉毛,张海燕. 否定非对合剩余格的双极值模糊理想[J]. 《山东大学学报(理学版)》, 2019, 54(5): 88-98.
[7] 罗清君. Quantale的L-模糊理想[J]. 《山东大学学报(理学版)》, 2019, 54(12): 63-67.
[8] 刘春辉. 否定非对合剩余格的双极值模糊素理想[J]. 《山东大学学报(理学版)》, 2019, 54(11): 71-80.
[9] 乔虎生,石学勤. 弱挠自由Rees商序S-系的同调分类[J]. 山东大学学报(理学版), 2018, 53(8): 49-52.
[10] 刘春辉. 关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 山东大学学报(理学版), 2018, 53(2): 65-72.
[11] 刘慧珍,辛小龙,王军涛. Monadic MV-代数上的微分[J]. 山东大学学报(理学版), 2016, 51(8): 53-60.
[12] 彭家寅. BL-代数的扰动模糊理想[J]. 山东大学学报(理学版), 2016, 51(10): 78-94.
[13] 薛丽霞, 李志慧, 谢佳丽. 对3条超边的超圈存取结构最优信息率的一点注记[J]. 山东大学学报(理学版), 2015, 50(11): 60-66.
[14] 刘卫锋. 布尔代数的软商布尔代数[J]. 山东大学学报(理学版), 2015, 50(08): 57-61.
[15] 张晓燕. 有限主理想环上接近MDR码[J]. 山东大学学报(理学版), 2015, 50(06): 59-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!