您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 15-19, 27.doi: 10.6040/j.issn.1671-9352.0.2023.404

•   • 上一篇    下一篇

具有某些特性的二极大子群对群结构的影响

张小红1(),刘威2,王鸿志3   

  1. 1. 宁波工程学院统计与数据科学学院,浙江 宁波 315211
    2. 扬州大学数学科学学院,江苏 扬州 225002
    3. 河海大学数学学院,江苏 南京 210098
  • 收稿日期:2023-09-18 出版日期:2024-08-20 发布日期:2024-07-31
  • 作者简介:张小红(1984—),女,讲师,博士,研究方向为有限群论. E-mail: zxh@nbut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12371018);中央高校基本科研业务费专项资金资助(1014);中央高校基本科研业务费专项资金资助(423135)

Influence of second maximal subgroups with given properties on structure of groups

Xiaohong ZHANG1(),Wei LIU2,Hongzhi WANG3   

  1. 1. School of Statistics and Data Science, Ningbo University of Technology, Ningbo 315211, Zhejiang, China
    2. College of Mathematical Science, Yangzhou University, Yangzhou 225002, Jiangsu, China
    3. School of Mathematics, Hohai University, Nanjing 210098, Jiangsu, China
  • Received:2023-09-18 Online:2024-08-20 Published:2024-07-31

摘要:

称子群AG中NS-可补,若存在子群B,使得G=AB,且对于A的任意正规子群X以及任意的pπ(B),总存在B的Sylow p-子群Bp,使得XBp=BpX。利用特定集合中二极大子群的NS-可补、覆盖远离等性质对有限群的结构进行研究,并给出了相关群类的刻画。

关键词: 极大子群, 二极大子群, 覆盖远离性质, NS-可补, 群类

Abstract:

A subgroup A of a finite group G is said to be NS-supplemented in G, if there exists a subgroup B of G such that G=AB and whenever X is a normal subgroup of A and pπ(B). There exists a Sylow p-subgroup Bp of B, such that XBp=BpX. In this paper, we explore the structure of finite groups by utilizing the properties of NS-supplement and cover-avoidance of second maximal subgroups in specific sets, and characterize the related classes of groups.

Key words: maximal subgroup, second maximal subgroup, cover-avoidance property, NS-supplement, class of group

中图分类号: 

  • O152.1
1 GUO Wenbin .The theory of classes of groups[M].Beijing: Science Press,1997.
2 GASCHÜTZ W .Praefrattinigruppen[J].Archiv der Mathematik,1962,13(1):418-426.
doi: 10.1007/BF01650090
3 GUO Xiuyun , SHUM K P .Cover-avoidance properties and the structure of finite groups[J].Journal of Pure and Applied Algebra,2003,181(2/3):297-308.
4 LIU Xiaolei , DING Nanqing .On chief factors of finite groups[J].Journal of Pure and Applied Algebra,2007,210(3):789-796.
doi: 10.1016/j.jpaa.2006.11.008
5 LÜ Yubo , LI Yangming .On cp-normal subgroups of finite groups[J].Communications in Algebra,2021,49(4):1405-1414.
doi: 10.1080/00927872.2020.1836190
6 MONAKHOV V S , TROFIMUK A A .On the supersolubility of a finite group with NS-supplemented subgroups[J].Acta Mathematica Hungarica,2020,160(1):161-167.
doi: 10.1007/s10474-019-00997-4
7 WANG Yuyun , MIAO Long , GAO Zhichao , et al.The influence of second maximal subgroups on the generalized p-solvability of finite groups[J].Communications in Algebra,2022,50(6):2584-2591.
doi: 10.1080/00927872.2021.2014512
8 GURALNICK R M .Subgroups of prime power index in a simple group[J].Journal of Algebra,1983,81(2):304-311.
doi: 10.1016/0021-8693(83)90190-4
9 DEMINA E N , MASLOVA N V .Nonabelian composition factors of a finite group with arithmetic constraints on nonsolvable maximal subgroups[J].Proceedings of the Steklov Institute of Mathematics,2015,289(1):64-76.
10 GUO Wenbin , KONDRAT'EV A S , MASLOVA N V , et al.Finite groups whose subgroups are solvable or have prime power indices[J].Proceedings of the Steklov Instituteof Mathematics,2020,309(Suppl.1):47-51.
11 FEIT W , THOMPSON J G .Solvability of groups of odd order[J].Pacific Journal of Mathematics,1963,13(3):775-1029.
doi: 10.2140/pjm.1963.13.775
12 ROSE J S .On finite insoluble groups with nilpotent maximal subgroups[J].Journal of Algebra,1977,48(1):182-196.
doi: 10.1016/0021-8693(77)90301-5
13 DENG Yan , MENG Wei , LU Jiakuan .Finite groups with nilpotent subgroups of even order[J].Bulletin of the Iranian Mathematical Society,2022,48(3):1143-1152.
doi: 10.1007/s41980-021-00570-2
14 李士恒, 柳海萍, 刘冬华.半次覆盖远离子群和有限群的可解性[J].数学杂志,2017,37(6):1303-1308.
doi: 10.3969/j.issn.0255-7797.2017.06.022
LI Shiheng , LIU Haiping , LIU Donghua .Semi-subnormal-cover-avoidance subgroups and the solvability of finite groups[J].Journal of Mathematics,2017,37(6):1303-1308.
doi: 10.3969/j.issn.0255-7797.2017.06.022
15 郭秀云.非幂零极大子群指数为素数幂的有限群[J].数学年刊,1994,15(6):721-725.
doi: 10.3321/j.issn:1000-8134.1994.06.001
GUO Xiuyun .Finite groups with non-nilpotent maximal subgroups exponents of prime powers[J].Chinese Annals of Mathematics,1994,15(6):721-725.
doi: 10.3321/j.issn:1000-8134.1994.06.001
[1] 高百俊,汤菊萍,高志超,宋菊. 关于Sylow p-子群的极大子群的$\mathscr{F}$-可补性对群结构的影响[J]. 《山东大学学报(理学版)》, 2024, 59(6): 98-102.
[2] 曹建基,王俊新,白鹏飞. 蕴含交换极大子群的极大类3-群上的光滑斜态射[J]. 《山东大学学报(理学版)》, 2024, 59(4): 23-30.
[3] 陈心丹,许丽,缪龙,刘威. 有限群的2-极大子群的边界因子[J]. 《山东大学学报(理学版)》, 2023, 58(2): 1-5.
[4] 史江涛,任惠瑄. 关于非幂零极大子群皆正规的有限群具有Sylow塔的注记[J]. 《山东大学学报(理学版)》, 2021, 56(8): 58-60.
[5] 毛月梅,杨南迎. 有限群的p-幂零性和超可解性[J]. 山东大学学报(理学版), 2016, 51(4): 39-42.
[6] 高辉,高胜哲*,尹丽. 子群的θ-完备和群的结构[J]. 山东大学学报(理学版), 2014, 49(03): 43-45.
[7] 鲍宏伟1,邱婷婷2,梁倞2. 有限群的若干局部性质[J]. J4, 2012, 47(12): 72-77.
[8] 高辉,高胜哲,尹丽. 关于极大子群的θ-偶[J]. J4, 2011, 46(2): 97-100.
[9] 王俊新. 几则有限群可解的条件[J]. J4, 2009, 44(8): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许春华,高宝玉*,卢磊,徐世平,曹百川,岳钦艳,张建 . 城市纳污河道废水化学强化一级处理的研究[J]. J4, 2006, 41(2): 116 -120 .
[2] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .
[3] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[4] 谢云龙,杜英玲 . 函数S-粗集与规律积分度量[J]. J4, 2007, 42(10): 118 -122 .
[5] 梁霄, 王林山 . 一类S分布时滞递归神经网络的全局吸引子[J]. J4, 2009, 44(4): 57 -60 .
[6] 董新梅 . 关于Suryanarayana的若干问题[J]. J4, 2007, 42(2): 83 -86 .
[7] 李志涛 付红斐. 对流占优扩散问题的特征动态有限元方法[J]. J4, 2009, 44(8): 90 -96 .
[8] 王 怡,刘爱莲 . 时标下的蛛网模型[J]. J4, 2007, 42(7): 41 -44 .
[9] 左进明. 五阶色散方程的一类交替分组方法[J]. J4, 2009, 44(4): 79 -83 .
[10] 张雪凤1,刘鹏1,2. 基于类间差异最大化的加权距离改进K-means算法[J]. J4, 2010, 45(7): 28 -33 .