您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 130-141.doi: 10.6040/j.issn.1671-9352.0.2023.432

• • 上一篇    下一篇

强奇异Calderón-Zygmund多线性交换子在Campanato空间上的估计

强佩佩,陶双平*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-12-19
  • 通讯作者: 陶双平(1964— ),男,教授,博士生导师,博士,研究方向为调和分析及其在色散方程中的应用. E-mail:taosp@nwnu.edu.cn
  • 作者简介:强佩佩(2000— ),女,硕士研究生,研究方向为调和分析. E-mail:peipei00012@163.com *通信作者:陶双平(1964— ),男,教授,博士生导师,博士,研究方向为调和分析及其在色散方程中的应用. E-mail:taosp@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12361018)

Estimates of multilinear commutators of strongly singular Calderón-Zygmund operators on Campanato Spaces

QIANG Peipei, TAO Shuangping*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-12-19

摘要: 研究多线性强奇异Calderón-Zygmund算子与Lipschitz函数生成的多线性交换子的映射的性质。证明在一定条件下,强奇异Calderón-Zygmund多线性交换子T(→overb)是从Lebesgue空间Lp1(Rn)×…×Lpm(Rn)到Campanato空间C p, β(Rn)上有界的。

关键词: 多线性强奇异Calderón-Zygmund算子, 交换子, Lipschitz空间, Campanato空间

Abstract: This paper studies the mappings properties of the multilinear commutators generated by the multilinear strongly singular Calderón-Zygmund operators and Lipschitz functions. It is proved that the multilinear commutators T(→overb) of the strongly singular Calderón-Zygmund operators is bounded from Lebesgue spaces to Campanato spaces under some certain conditions.

Key words: multilinear strongly singular Calderón-Zygmund operators, commutator, Lipschitz spaces, Campanato spaces

中图分类号: 

  • O174
[1] COIFMAN R R, ROCHBERG R, WEISS G. Factorization theorems for Hardy spaces in several variables[J]. The Annals of Mathematics, 1976, 103(3):611-635.
[2] JANSON S. Mean oscillation and commutators of singular integral operators[J]. Arkiv for Matematik, 1978, 16(1/2):263-270.
[3] PALUSZYNSKI M. Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss[J]. Indiana University Mathematics Journal, 1995, 44(1):1-17.
[4] ZHANG Lei, SHI Shaoguang, HUANG Hao. New characterizations of Lipschitz space via commutators on Morrey spaces[J]. Advances in Mathematics, 2015, 44(6):899-907.
[5] ZHANG Pu, ZHU Xiaomeng. A note on commutators of strongly singular Calderón-Zygmund operators[J]. Open Mathematics, 2022, 20(1):1057-1065.
[6] 陶双平,高荣. 多线性分数次积分和极大算子在Morrey空间上的加权估计[J]. 山东大学学报(理学版),2018,53(6):30-37. TAO Shuangping, GAO Rong. Estimates of multilinear fractional integrals and maximal operators on weighted Morrey spaces[J]. Journal of Shandong University(Natural Science), 2018, 53(6):30-37.
[7] 陆强德,陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标Lebesgue空间上的有界性[J]. 山东大学学报(理学版),2017,52(9):54-58. LU Qiangde, TAO Shuangping. Boundedness of commutators of Calderón-Zygmund operators and fractional integrals in homogeneous grand variable exponent Lebesgue spaces[J]. Journal of Shandong University(Natural Science), 2017, 52(9):54-58.
[8] LU Guanghui, TAO Shuangping. Estimate for bilinear Calderón-Zygmund operator and its commutator on product of variable exponent spaces[J]. Bulletin of the Korean Mathematical Society, 2022, 59(6):1471-1493.
[9] YANG Yanqi, TAO Shuangping. θ-type Calderón-Zygmund operators and commutators in variable exponents Herz space[J]. Open Mathematics, 2018, 16(1):1607-1620.
[10] LIN Yan, LU Guozhen, LU Shanzhen. Sharp maximal estimates for multilinear commutators of multilinear strongly singular Calderón-Zygmund operators and applications[J]. Forum Mathematicum, 2019, 31(1):1-18.
[11] YANG Shuhui, LIN Yan. Multilinear strongly singular integral operators with generalized kernels and applications[J]. AIMS Mathematics, 2021, 6(12):13533-13551.
[12] LIN Yan, YAN Huihui. Multilinear strongly singular Calderón-Zygmund operators and commutators on Morrey type spaces[J]. Jordan Journal of Mathematics and Statistics, 2021, 14(2):351-375.
[13] LIN Yan, ZHANG Guoming. Weighted estimates for commutators of strongly singular Calderón-Zygmund operators[J]. Acta Mathematica Sinica, 2016, 32(11):1297-1311.
[14] ALVAREZ J, MILMAN M. Hp continuity properties of Calderón-Zygmund-type operators[J]. Journal of Mathematical Analysis and Applications, 1986, 118(1):63-79.
[15] DEVORE R A, SHARPLEY R C. Maximal functions measuring smoothness[J]. Memoirs of the American Mathematical Society, 1984, 47(293):1-115.
[16] JANSON S, TAIBLESON M, WEISS G. Elementary characterizations of the Morrey-Campanato spaces[J] //MALKERI G, RICCI F, WEISS G. Harmonic Analysis, Lecture Notes in Mathematics. Berlin: Springer, 1983, 992:101-114.
[17] GARCÍA-CUERVA J, RUBIO DE FRANCIA J L. Weighted norm inequalities and related topics[M]. Amsterdam: North-Holland Publishing Company, 1985.
[18] LERNER A K, OMBROSI S, TORRES R H, et al. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory[J]. Advances in Mathematics, 2009, 220(4):1222-1264.
[19] LIN Yan. Multilinear theory of strongly singular Calderón-Zygmund operators and applications[J]. Nonlinear Analysis, Theory, Methods and Applications, 2020, 192:111699.
[1] 李雪梅,张铮,逯光辉Symbol`@@. 与球拟Banach函数空间相关的广义Morrey空间上参数型Littlewood-Paley算子及高阶交换子[J]. 《山东大学学报(理学版)》, 2025, 60(8): 86-94.
[2] 刘占宏,陶双平. 分数次极大算子及交换子在Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2024, 59(6): 108-115.
[3] 芮俪,逯光辉,李雪梅. 广义加权变指标Morrey空间上双线性θ-型Calderón-Zygmund算子[J]. 《山东大学学报(理学版)》, 2024, 59(4): 62-72.
[4] 郑宇洁,刘爱芳. 局部交换子及其酉系统中的r-重游荡算子[J]. 《山东大学学报(理学版)》, 2024, 59(2): 120-126.
[5] 韦营营,张婧. Marcinkiewicz积分交换子在变指标Herz Triebel-Lizorkin空间的有界性[J]. 《山东大学学报(理学版)》, 2022, 57(12): 55-63.
[6] 史鹏伟,陶双平. 极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子[J]. 《山东大学学报(理学版)》, 2022, 57(12): 45-54.
[7] 辛银萍. 参数型Marcinkiewicz积分交换子在变指数Herz-Morrey空间的加权有界性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 66-75.
[8] 王敏,方小珍,瞿萌,束立生. 多线性Hardy-Littlewood极大算子交换子的有界性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 16-22.
[9] 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75.
[10] 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50.
[11] 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58.
[12] 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105.
[13] 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110.
[14] 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18.
[15] 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016, 51(10): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!