您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 13-19.doi: 10.6040/j.issn.1671-9352.0.2023.469

• 群论 • 上一篇    

p-群上的作用与p-超可解性

白鹏飞,王俊新*,曹建基   

  1. 山西财经大学应用数学学院, 山西 太原 030006
  • 发布日期:2025-05-19
  • 通讯作者: 王俊新(1966— ),男,教授,博士,研究方向为有限群论. E-mail:wangjunxin660712@163.com
  • 作者简介:白鹏飞(1987— ),男,副教授,博士,研究方向为有限群论. E-mail:baipengfei870514@163.com*通信作者:王俊新(1966— ),男,教授,博士,研究方向为有限群论. E-mail:wangjunxin660712@163.com
  • 基金资助:
    国家自然科学基金资助项目(12171302,11801334);山西省自然科学基金资助项目(202103021224287);山西省回国留学人员科研项目(2024-095)

Action on p-groups and p-supersolvability

BAI Pengfei, WANG Junxin*, CAO Jianji   

  1. School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
  • Published:2025-05-19

摘要: 设有限群A作用在有限p-群P上,其中|P|>pe≥p3, e是某个固定的正整数,证明了若P中的每个pe阶非循环且非极大类子群皆是O〓p(A)-不变的,则O〓p(A<sup>Ap-1)在P上的作用是平凡的(即CP(O〓p(AAp-1))=P),其中Ap-1是由所有方次数整除p-1的交换群组成的群系,AAp-1是A的Ap-1-剩余。给出了有限群是p-超可解的若干充分条件。

关键词: 非循环且非极大类p-群, p-超可解, S-半置换, Zπ-置换

Abstract: Let a finite group A act on a finite p-group P with |P|>pe≥p3, where e is a fixed positive integer. In this paper, it is proved that if every non-cyclic and non-maximal class subgroup of order pe of P is O p(A)-invariant, then O p(AAp-1) acts trivially on P(namely CP(O p(AAp-1))=P), where Ap-1 is a formation which consists of all abelian groups with exponent dividing p-1 and AAp-1 is the Ap-1-residue of A. Some sufficient conditions for a finite group to be p-supersolvable are also given.

Key words: non-cyclic and non-maximal class p-group, p-supersolvability, S-semipermutable, Zπ-permutability

中图分类号: 

  • O152
[1] 徐明曜,黄建华,李慧陵,等. 有限群导引[M]. 北京:科学出版社,1999:20-56. XU Mingyao, HUANG Jianhua, LI Huiling, et al. Finite groups guidance[M]. Beijing: Science Press, 1999:20-56.
[2] BERKOVICH Y, ISAACS I M. p-supersolvability and actions on p-groups stabilizing certain subgroups[J]. Journal of Algebra, 2014, 414:82-94.
[3] GUO Xiuyun, MENG Hangyang. Actions on p-groups with the kernel containing the F-residuals[J]. Communications in Algebra, 2017, 45:3022-3033.
[4] BAI Pengfei, GUO Xiuyun, ZHANG Boru. The Action on p-groups and p-supersolvability[J]. Algebra Colloquium, 2017, 24:685-696.
[5] 徐明曜,曲海鹏. 有限p群[M]. 北京:北京大学出版社,2010:63-75. XU Mingyao, QU Haipeng. Finite p-groups[M]. Beijing: Peking University Press, 2010:63-75.
[6] LI Baojun, GONG Lü. On f-hypercentral actions of finite group[J]. Communications in Algebra, 2009, 37:3410-3417.
[7] LÜ Gong, CHEN Qilin, LI Baojun. On cyclic actions of finite groups[J]. Mediterranean Journal of Mathematics, 2024, 21: 1-23.
[8] 曹建基,王俊新,白鹏飞. 蕴含交换极大子群的极大类 3-群上的光滑斜态射[J]. 山东大学学报(理学版),2024,59:23-30. CAO Jianji, WANG Junxin, BAI Pengfei. Smooth skew morphisms of a kind of maximal class 3-groups which have abelian maximal subgroups[J]. Journal of Shandong University(Natural Science), 2024, 59:23-30.
[9] WEI Xianbiao, GUO Xiuyun. On s-permutable subgroups and p-nilpotency of finite groups[J]. Communications in Algebra, 2009, 37:3410-3417.
[10] SKIBA A N. On weakly s-permutable subgroups of finite groups[J]. Journal of Algebra, 2007, 315:192-209.
[11] WANG Lifang, WANG Yanming. On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups[J]. Communications in Algebra, 2006, 34:143-149.
[12] GUO Xiuyun, LU Jiakuan. On SS-supplemented subgroups of finite groups and their properties[J]. Glasgow Mathematical Journal, 2012, 54:481-491.
[13] ASAAD M, HELIEL A A. On permutable subgroups of finite groups[J]. Archiv der Mathematik, 2003, 80:113-118.
[14] HELIEL A A, BALLESTER-BOLINCHES A, ESTEBAN-ROMERO R, et al. Z-permutable subgroups of finite groups[J]. Monatshefte für Mathematik, 2016, 179:523-534.
[15] 徐明曜. 有限群导引[M]. 北京:科学出版社,1999:74. XU Mingyao. Finite groups guidance[M]. Beijing: Science Press, 1999:74.
[16] ISAACS I M. Semipermutable π-subgroups[J]. Archiv der Mathematik(Basel), 2014, 102:1-6.
[1] 龚何余,舒琴,赵平. 半群$\mathscr{C} \mathscr{F}_{(n, r)}$的幂等元秩[J]. 《山东大学学报(理学版)》, 2024, 59(10): 122-126.
[2] 刘洋,宫春梅. 具有右正则中间幂等元的r-宽大半群[J]. 《山东大学学报(理学版)》, 2024, 59(10): 115-121.
[3] 张小红,刘威,王鸿志. 具有某些特性的二极大子群对群结构的影响[J]. 《山东大学学报(理学版)》, 2024, 59(8): 15-19, 27.
[4] 高建玲,毛月梅,曹陈辰. SS-拟正规子群对有限群p-幂零性的影响[J]. 《山东大学学报(理学版)》, 2024, 59(8): 9-14.
[5] 梁星亮,李宇航. 关于分式S-系的一个注记[J]. 《山东大学学报(理学版)》, 2024, 59(8): 1-8.
[6] 李艳霞,海进科. 有限生成交换群到有限群间的同态数量[J]. 《山东大学学报(理学版)》, 2024, 59(6): 103-107.
[7] 高百俊,汤菊萍,高志超,宋菊. 关于Sylow p-子群的极大子群的$\mathscr{F}$-可补性对群结构的影响[J]. 《山东大学学报(理学版)》, 2024, 59(6): 98-102.
[8] 李晓妍,乔虎生. 条件(P′ E)对幺半群的刻画[J]. 《山东大学学报(理学版)》, 2024, 59(6): 13-18.
[9] 宫春梅,彭娇,白雪娜. 幂等元集为正规带的r-宽大半群上的好同余[J]. 《山东大学学报(理学版)》, 2024, 59(6): 6-12.
[10] 吴心怡,乔虎生. 条件(P)与强平坦性[J]. 《山东大学学报(理学版)》, 2024, 59(6): 1-5, 12.
[11] 曹建基,王俊新,白鹏飞. 蕴含交换极大子群的极大类3-群上的光滑斜态射[J]. 《山东大学学报(理学版)》, 2024, 59(4): 23-30.
[12] 腾文,龙凤山. 微分Lie-Yamaguti超代数的上同调与形变[J]. 《山东大学学报(理学版)》, 2024, 59(2): 32-37,46.
[13] 陆瑞霞,乔虎生. S-系的D-多余子系[J]. 《山东大学学报(理学版)》, 2023, 58(11): 71-75.
[14] 梁星亮,党允,陈学莹. 关于满足条件(PI)的S-系[J]. 《山东大学学报(理学版)》, 2023, 58(8): 6-12.
[15] 凌贤,海进科. 幂零群通过阿贝尔群扩张的整群环挠单位的有理共轭性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!