《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 41-48.doi: 10.6040/j.issn.1671-9352.0.2023.526
刘桂东1,柯宜龙2,尤国桥1*,刘曼茜2
LIU Guidong1, KE Yilong2, YOU Guoqiao1*, LIU Manxi2
摘要: 提出一种改进的递归图技术,用于计算基于递归微态的熵值(entropy based on recurrence microstates, ENRM)。该方法使用滚动窗口的方式来遍历递归矩阵的子矩阵,能够在保证原有算法精度的基础上大幅提高计算效率,通过Logistic模型进行模拟实验。结果表明,基于该改进递归图技术的模型具有更高的计算效率和精度。此外,ENRM关于市场有效性的研究结果表明,使用ENRM与传统的递归图指标递归熵(entropy, ENTR)相结合来分析市场有效性时,不仅具有ENTR单指标量化市场有效性的作用,还能有效识别并进行市场有效性呈动态性演化的时间段。
中图分类号:
[1] LEKIEN F, LEONARD N. Dynamically consistent Lagrangian coherent structures[C] // Experimental Chaos: 8th Experimental Chaos Conference. Florence: AIP Publishing, 2004:132-139. [2] SHADDEN S C, LEKIEN F, MARSDEN J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D: Nonlinear Phenomena, 2005, 212:271-304. [3] SAPSIS T, HALLER G. Inertial particle dynamics in a hurricane[J]. Journal of the Atmospheric Sciences, 2009, 66:2481-2492. [4] CARDWELL B M, MOHSENI K. Vortex shedding over two-dimensional airfoil: where do the particles come from?[J]. AIAA Journal, 2008, 46(3):545-547. [5] TANG W B, CHAN P W, HALLER G. Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport[J]. Chaos, 2010, 20:017502. [6] BADAS M G, DOMENICHINI F, QUERZOLI G. Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents[J]. Meccania, 2017, 52:529-544. [7] LIPINSKI D, MOHSENI K. Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria[J]. Journal of Experimental Biology, 2009, 212:2436-2447. [8] GREEN M A, ROWLEY C W, SMITS A J. Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows[J]. Chaos, 2010, 20:017510. [9] LUKENS S, YANG X Z, FAUCI L. Using Lagrangian coherent structures to analyze fluid mixing by cilia[J]. Chaos, 2010, 20:017511. [10] MANDA B M, SENYANGE B, SKOKOS C. Chaotic wave-packet spreading in two-dimensional disordered nonlinear lattices[J]. Physical Review E, 2020, 101:032206. [11] LASAGNA D, SHARMA A, MEYERS J. Periodic shadowing sensitivity analysis of chaotic systems[J]. Journal of Computational Physics, 2019, 391:119-141. [12] CARUSONE A, SICOT C, BONNET J P. Transient dynamical effects induced by single-pulse fluidic actuation over an airfoil[J]. Experiments in Fluids, 2021, 62:25. [13] ECKMANN J P, KAMPHORST S O, RUELLE D. Recurrence plots of dynamical systems[J]. Europhysics Letters, 1987, 4(9):973-977. [14] 崔澜,张宏立,马萍,等. 基于递归熵及长短期记忆神经网络的滚动轴承退化趋势预测[J]. 轴承,2021,496(3):45-51,55. CUI Lan, ZHANG Hongli, MA Ping, et al. Prediction on degradation trend of rolling bearings based on recurrent entropy and long short-term memory neural network[J]. Bearing, 2021, 496(3):45-51,55. [15] 尚前明,朱仁杰,杨安声,等. 基于RP-CNN的柴油机故障识别[J]. 船舶工程,2022,44(6):89-116. SHANG Qianming, ZHU Renjie, YANG Ansheng, et al. Fault identification of diesel engine based on RP-CNN[J]. Ship Engineering, 2022, 44(6):89-116. [16] 钟季康,宋志怀,郝为强. RQA在肌电分析中的应用[J]. 生物物理学报,2002,18(2):241-245. ZHONG Jikang, SONG Zhihuai, HAO Weiqiang. Application of recurrence qualification analysis to emg[J]. Acta Biophysica Sinica, 2002, 18(2):241-245. [17] WEBBER C L, ZBILUT J P. Dynamical assessment of physiological systems and states using recurrence plot strategies[J]. Journal of Applied Physiology, 1994, 76(2):965-973. [18] MARWAN N, ROMANO M C, THIEL M, et al. Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438(5/6):237-329. [19] CORSO G, PRADO T L, LIMA G, et al. Quantifying entropy using recurrence matrix microstates[J]. Chaos, 2018, 28:083108. [20] PRADO T L, CORSO G, LIMA G, et al. Maximum entropy principle in recurrence plot analysis on stochastic and chaotic systems[J]. Chaos, 2020, 30:043123. [21] YOU Guoqiao, KE Yilong. ENRM: an alternative tool for studying dynamical systems[J]. Chaos, Solitons and Fractals, 2023, 174:113889. [22] 吴礼斌,刘盛宇,王烨. 基于递归定量分析与内生结构突变模型的股票市场非线性特征研究[J]. 中国管理科学,2012,20:315-321. WU Libin, LIU Shengyu, WANG Ye. Using recurrence quantification analysis and endogenous structural break test to distinguish nonlinear dynamic characteristics of Chinas stock market[J]. Chinese Journal of Management Science, 2012, 20:315-321. [23] 李燕,郝晓玲,李湛. 全球股市有效性的动态演化及量化比较研究[J]. 管理科学学报,2022,25(4):21-43. LI Yan, HAO Xiaoling, LI Zhan. Dynamic evolution and quantitative comparison of global stock market effectiveness[J]. Journal of Management Sciences in China, 2022, 25(4):21-43. [24] 李燕. 基于递归图的股票市场非线性动力学演化研究[D]. 上海:上海财经大学,2020. LI Yan. Research on nonlinear dynamics evolution of stock market based on recurrence plot[D]. Shanghai: Shanghai University of Finance and Economics, 2020. |
[1] | 刘玉玲. 一类广义鞍点问题的结构化向后误差[J]. 《山东大学学报(理学版)》, 2024, 59(10): 40-45. |
[2] | 阿迪力·艾力,开依沙尔·热合曼. 求解广义Burgers-Fisher方程的微分求积法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 30-39. |
[3] | 李侦瑷,韦慧,陈馨. 基于双目标的MNSGA-Ⅱ算法求解非线性方程组[J]. 《山东大学学报(理学版)》, 2024, 59(10): 22-29. |
[4] | 艾露露,刘蕴贤. 半导体问题漂移扩散模型的超弱间断Galerkin方法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 10-21. |
[5] | 王洋. 一类复对称线性方程组的块三角分裂及其预处理迭代算法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 1-9. |
[6] | 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83. |
[7] | 吕秀敏,葛倩,李金. 重心插值配点法求解小振幅长波广义BBM-KdV方程[J]. 《山东大学学报(理学版)》, 2024, 59(8): 67-76. |
[8] | 张如,韩旭,刘小刚. 非线性延迟微分方程边值方法的收敛性和收缩性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 97-101. |
[9] | 李翠平,高兴宝. 求解具有约束的l1-范数问题的神经网络模型[J]. 《山东大学学报(理学版)》, 2018, 53(12): 90-98. |
[10] | 曹伟东,戴涛,于金彪,王晓宏,施安峰. 化学驱模型中压力方程的交替方向解法改进[J]. 山东大学学报(理学版), 2018, 53(10): 88-94. |
[11] | 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24. |
[12] | 刘园园,曹德欣,秦军. 非线性二层混合整数规划问题的区间算法[J]. 山东大学学报(理学版), 2018, 53(2): 9-17. |
[13] | 孔艺婷,王同科. 代数和对数奇异Fourier积分的最速下降方法[J]. 山东大学学报(理学版), 2017, 52(10): 50-55. |
[14] | 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34. |
[15] | 施章磊,李维国. A†分级硬阈值追踪[J]. 山东大学学报(理学版), 2017, 52(8): 58-64. |
|