山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (1): 115-122.doi: 10.6040/j.issn.1671-9352.0.2016.117
武婧媛,石瑞青*
WU Jing-yuan, SHI Rui-qing*
摘要: 研究了一类包含媒体报道与隔离措施的SEQIHRS传染病模型的动力学行为。 首先得到了系统的有效再生数RC。 其次, 通过简单计算发现:系统总是存在无病平衡点,并且当RC<1时,它是局部渐近稳定的;当RC>1时,它是不稳定的。 然后,运用中心流形定理,发现当域值RC通过1时,系统将会发生跨临界分支,并且唯一的地方病平衡点是局部渐近稳定的。 此外, 计算结果表明,被隔离个体的传染力将影响卫生部门如何实施相应的隔离措施。
中图分类号:
[1] BUONOMO B, DONOFRIO A, LACITIGNOLA D. Global stability of an SIR epidemic model with information dependent vaccination[J]. Mathematical Biosciences, 2008, 216(1):9-16. [2] CASTILLO-CHAVEZ C, SONG Baojun. Dynamical models of tuberculosis and their applications[J]. Mathematical Biosciences & Engineering, 2004, 1(2):361-404. [3] CHAMCHOD F, BRITTON N F. On the dynamics of a two-strain influenza model with isolation[J]. Mathematical Modelling of Natural Phenomena, 2012, 7(3):49-61. [4] CHITNIS N, HYMAN J M, CUSHING J M. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model[J]. Bulletin of Mathematical Biology, 2008, 70(5):1272-1296. [5] CUI Jingan, SUN Yonghong, ZHU Huaiping. The impact of media on the control of infectious diseases[J]. Journal of Dynamics and Differential Equations, 2007, 20(1):31-53. [6] CUI Jingan, TAO Xin, ZHU Huaiping. An SISinfection model incorporating media coverage[J]. Rocky Mountain Journal of Mathematics, 2008, 38(5):1323-1334. [7] GREENBERG M E, LAI M H, HARTEL G F, et al. Response to a monovalent 2009 influenza A(H1N1)vaccine[J]. The New England Journal of Medicine, 2009, 361(25):2405-2413. [8] HANCOCK K, VEGUILLA V, LU Xiuhua, et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus[J]. The New England Journal of Medicine, 2009, 361(20):1945-1952. [9] KAO R R, ROBERTS M G. Quarantine-based disease control in domesticated animal herds[J]. Applied Mathematics Letters, 1998, 11(4):115-120. [10] KISS I Z, CASSELL J, RECKER M, et al. The impact of information transmission on epidemic outbreaks[J]. Mathematical Biosciences, 2010, 225(1):1-10. [11] LI Yongfeng, CUI Jingan. The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5):2353-2365. [12] LIU Rongsong, WU Jianhong, ZHU Huaiping. Media/psychological impact on multiple outbreaks of emerging infectious diseases[J]. Computational and Mathematical Methods in Medicine, 2007, 8(3):153-164. [13] MCLEOD R G, BREWSTER J F, GUMEL A B, et al. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and output[J]. Mathematical Biosciences & Engineering, 2006, 3(3):527-544. [14] SAHU G P, DHAR J. Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity[J]. Journal of Mathematical Analysis & Applications, 2015, 421:1651-1672. [15] TCHUENCHE J M, DUBE N, BHUNU C P, et al. The impact of media coverage on the transmission dynamics of human influenza[J]. BMC Public Health, 2011, 11:S5. [16] WANG Ai, XIAO Yanni. A Filippov system describing media effects on the spread of infectious diseases[J]. Nonlinear Analysis Hybrid Systems, 2014, 11:84-97. [17] TRACHT S M, DEL VALLE S Y, HYMAN J M. Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A(H1N1)[J]. PLoS ONE, 2010, 5(2):e9018. [18] WANG Yi, CAO Jinde, JIN Zhen, et al. Impact of media coverage on epidemic spreading in complex networks[J]. Physica A Statistical Mechanics & Its Applications, 2013, 392(23):5824-5835. |
[1] | 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38. |
[2] | 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24. |
[3] | 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17. |
[4] | 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82. |
[5] | 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31. |
[6] | 薛文萍,纪培胜. 混合AQC函数方程在FFNLS上的HUR稳定性[J]. 山东大学学报(理学版), 2016, 51(4): 1-8. |
[7] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[8] | 史学伟,贾建文. 一类具有信息变量和等级治愈率的SIR传染病模型的研究[J]. 山东大学学报(理学版), 2016, 51(3): 51-59. |
[9] | 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122. |
[10] | 林青腾,魏凤英. 具有饱和发病率随机SIQS传染病模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(1): 128-134. |
[11] | 李向良, 孙艳阁, 李英. CO2水基泡沫的稳定机理研究[J]. 山东大学学报(理学版), 2015, 50(11): 32-39. |
[12] | 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33. |
[13] | 方瑞, 马娇娇, 范胜君. 一类倒向随机微分方程解的稳定性定理[J]. 山东大学学报(理学版), 2015, 50(06): 39-44. |
[14] | 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(05): 82-87. |
[15] | 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87. |
|