您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (8): 53-60.doi: 10.6040/j.issn.1671-9352.0.2015.610

• • 上一篇    下一篇

Monadic MV-代数上的微分

刘慧珍1,辛小龙1*,王军涛1   

  1. 西北大学数学学院, 陕西 西安 710127
  • 收稿日期:2015-12-17 出版日期:2016-08-20 发布日期:2016-08-08
  • 通讯作者: 辛小龙(1955— ), 男, 教授, 博士生导师, 研究方向为逻辑代数、超代数、不确定性理论. E-mail:xlxin@nwu.edu.cn E-mail:1320746211@qq.com
  • 作者简介:刘慧珍(1989— ), 女, 硕士生, 研究方向为逻辑代数. E-mail:1320746211@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11571281)

On derivations of monadic MV-algebras

LIU Hui-zhen1, XIN Xiao-long1*, WANG Jun-tao1   

  1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China
  • Received:2015-12-17 Online:2016-08-20 Published:2016-08-08

摘要: 在Monadic MV-代数(M,∃)上引入并研究了M-微分。定义并研究了Monadic MV-代数(M,∃)上的强M-微分和正则M-微分,利用强M-微分,给出了一个MV-代数成为布尔代数的等价刻画,并给出了正则M-微分成为保序M-微分的等价刻画。进一步地,在Monadic MV-代数(M,∃)上定义不动点集合Fd∃,证明了若d为保序微分时,Monadic MV-代数上的不动点之集为M的格理想。随后,在Monadic MV-代数上定义并研究了可加微分,从而得到了一些关于可加微分的重要性质。最后,在微分Monadic MV-代数(M,∃,d)上定义了Monadic微分理想,并对其进行了刻画,而且研究了(M,∃,d)上所有Monadic微分理想组成的集合ID(M)的代数结构。

关键词: MV-代数, 微分, 微分理想, 不动点之集, monadic算子

Abstract: We define the notion of M-derivations on monadic MV-algebras(M,∃)and discuss some properties of it. Based on it, the notions of the strong M-derivations and regular M-derivations are introduced. By use of strong M-derivations, we give some equivalent conditions in which a MV-algebra becomes a boolean algebra. Next, some characterizations about the isotone M-derivations in monadic MV-algebras are provided by regular M-derivations. Moreover, the notion of the fixed set of a derivation in monadic MV-algebras is introduced and discussed. The notion of additive derivations of monadic MV-algebras are given and some of its properties are investigated. Also, we prove that an additive derivation of linearly ordered monadic MV-algebras is isotone. Finally, monadic differential ideals of monadic MV-algebras are studied. In particular, algebraic structures of the set ID(M)of all monadic differential ideals on regular monadic MV-algebras are researched.

Key words: MV-algebra, derivation, the fixed set, differential ideal, monadic operator

中图分类号: 

  • O155
[1] CHANG C C. Algebraic analysis of many valued logics[J]. Transactions of the American Mathematical Society, 1958, 88(2):467-490.
[2] CIGNOLI R, DOTTAVIANO I D, MUNDICI D. Algebra foundations of many-valud resoning[M]. Dordrechet: Kluwer Academic Publishers, 2000.
[3] RUTLEDGE J D. A preliminary investigation of the infinitely many-valued predicate calculus[D]. New York: Cornell University, 1959.
[4] NOLA A D, GRIGILIA R. On monodic MV-algebras[J]. Annals of Pure and Applied Logic, 2004, 128(3):125-139.
[5] POSNER E. Derivations in prime rings[J]. Proceedings of the American Mathematical Society, 1957, 8(6):1093-1100.
[6] BELL H E, MASON G. On derivations in near-rings[J]. North-Holland Mathematics Studies, 1987, 137:31-35.
[7] JUN Y B, XIN Xiaolong. On derivations of BCI-algebras[J]. Information Sciences, 2004, 159(3):167-176.
[8] XIN Xiaolong, LI Tiyao, LU Jinghua. On derivations of lattices [J]. Information Sciences, 2008, 178(2):307-316.
[9] ALSHEHRI N O. Derivations of MV-Algebras[J]. International Journal of Mathematics and Mathematical Sciences, 2010. Doi: 10.1155/2010/312027.
[10] 冯敏, 辛小龙, 李毅君. MV-代数上的f导子和g导子[J]. 山东大学学报(理学版), 2014, 49(6):50-56. FENG Min, XIN Xiaolong, LI Yijun. On f derivations and g derivations of MV-algebras[J]. Journal of Shangdong University(Natural Science), 2014, 49(6):50-56.
[11] 王军涛, 辛小龙, 贺鹏飞. MV-代数上的(→,⊕)-导子[J]. 陕西师范大学学报(自然科学版), 2015, 43(4):16-27. WANG Juntao, XIN Xiaolong, HE Pengfei. On(→,⊕)-derivation of MV-algebras[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2015, 43(4):16-27.
[12] 王军涛, 辛小龙, 邹宇晰. 超环上的f导子[J]. 西北大学学报(自然科学版), 2015, 45(5):693-698. WANG Juntao, XIN Xiaolong, ZOU Yuxi. On f derivations of hyerrings[J]. Journal of Northwest University(Natural Science Edition), 2015, 45(5):693-698.
[13] WANG Juntao, JUN Y B, XIN Xiaolong, et al. On derivations of Hyperlattices[J]. Journal of Mathematical Research with Applications, 2016, 36(2):151-161.
[14] RASOULI S, DAVVAZ B. Roughness in MV-algebras[J]. Information Sciences, 2010, 180(5):737-747.
[15] BIRKHOFF G. Lattice theory[M]. Rhode Island: American Mathematical Society, 1940.
[1] 刘艳芳,王玉玉. Adams谱序列E2项的一些注记[J]. 山东大学学报(理学版), 2018, 53(8): 43-48.
[2] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[3] 张石梅,吴秀碧,龙见仁. 复线性微分方程解的增长性的进一步讨论[J]. 山东大学学报(理学版), 2018, 53(6): 23-29.
[4] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[5] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[6] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[7] 杨丹丹. 带有非局部积分边值的Hadamard型分数阶微分包含解的终结点型存在性定理[J]. 山东大学学报(理学版), 2018, 53(2): 46-51.
[8] 李会会,刘希强,辛祥鹏. 变系数Benjamin-Bona-Mahony-Burgers方程的微分不变量和精确解[J]. 山东大学学报(理学版), 2018, 53(10): 51-60.
[9] 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29.
[10] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[11] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[12] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[13] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[14] 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88.
[15] 张琬迪,宋晓秋,吴尚伟. 一类模糊积分微分方程的模糊微分变换法[J]. 山东大学学报(理学版), 2017, 52(10): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!