您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 91-96.doi: 10.6040/j.issn.1671-9352.0.2018.561

• • 上一篇    

一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性

竺晓霖,翟成波*   

  1. 山西大学数学科学学院, 山西 太原 030006
  • 发布日期:2019-10-12
  • 作者简介:竺晓霖(1995— ), 女, 硕士研究生, 从事非线性泛函分析研究. E-mail:297381382@qq.com*通信作者简介:翟成波(1977— ), 男, 教授, 从事非线性泛函分析与方程研究. E-mail:cbzhai@sxu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(11201272);山西省自然科学基金资助项目(2015011005);山西省留学基金资助项目(2016-009)

Local existence and uniqueness of positive solutions for a Sturm-Liouville boundary value problem of second order differential equations

ZHU Xiao-lin, ZHAI Cheng-bo*   

  1. School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
  • Published:2019-10-12

摘要: 研究了一类带有Sturm-Liouville边值条件的二阶非线性微分方程的正解。利用半序Banach空间中的不动点定理, 给出了正解的局部存在性与唯一性。最后,给出2个应用例子。

关键词: Sturm-Liouville边值问题, 局部存在性, 局部唯一性, 正解

Abstract: The positive solution of a class of second-order nonlinear differential equation with Sturm-Liouville boundary value conditions is studied. By using fixed point theorems in ordered Banach spaces, the local existence and uniqueness of positive solutions is given. Finally, two applied examples are given.

Key words: Sturm-Liouville boundary value problems, local existence, local uniqueness, positive solution

中图分类号: 

  • O177.91
[1] GE Weigao, REN Jingli. New existence theorems of positive solutions for Sturm-Liouville boundary value problems[J]. Applied Mathematics and Computation, 2006, 148(3):631-644.
[2] ZHAI Chengbo, GUO Chunmei. Positive solutions for third-order Sturm-Liouville boundary-value problems with p-Laplacian[J]. Electronic Journal of Differential Equations, 2009(154):2059-2066.
[3] DU Zengji, YIN Jian. A second order differential equation with generalized Sturm-Liouville integral boundary conditions at resonance[J]. Filomat, 2014(28):1437-1444.
[4] MA Ruyun. Nonlinear discrete Sturm-Liouville problems at resonance[J]. Nonlinear Analysis: Theory, Methods and Applications, 2007(67):3050-3057.
[5] MARONCELLI D, RODRIGUEZ J. Existence theory for nonlinear Sturm-Liouville problems with unbounded nonlinearities[J]. Differential Equations and Applications, 2014(6):455-466.
[6] RODRIGUEZ J, SUAREZ A. On nonlinear perturbations of Sturm-Liouville problems in discrete and continuous settings[J]. Differential Equations and Applications, 2016,(8):319-334.
[7] MARONCELLI D, RODRIGUEZ J. Existence theory for nonlinear Sturm-Liouville problems with non-local boundary conditions[J]. Differential Equations and Applications, 2018, 10(2):147-161.
[8] 苏华, 刘立山. 二阶Sturm-Liouville特征值问题解的存在与非存在性[J]. 数学学报(中文版), 2014, 57(6):1241-1248. SU Hua, LIU Lishan. The existence and nonexistence of positive solutions for second-order Sturm-Liouville eigenvalue problems[J]. Act Mathematica Sinica(Chinese Series), 2014, 57(6):1241-1248.
[9] 陈东晓,陈应生. 二阶微分方程积分边值问题正解的存在性[J]. 华侨大学学报(自然科学版), 2013, 34(5):586-590. CHEN Dongxiao, CHEN Yingsheng. Existence positive solutions of boundary value problems for second order differential equations with integral conditions[J]. Journal of Huaqiao University(Natural Science), 2013, 34(5):586-590.
[10] 郭肖肖, 赵增勤. 非良序上下解条件下带脉冲项Sturm-Liouville边值问题的正解[J]. 系统科学与数学, 2013, 33(10):1248-1255. GUO Xiaoxiao, ZHAO Zengqin. Positive solutions of Sturm-Liouville BVP for impulsive differential equations with a non-well-ordered upper and lower solution condition[J]. Journal of Systems Science and Mathematical Sciences, 2013, 33(10):1248-1255.
[11] 郭大钧. 非线性分析中的半序方法[M]. 济南: 山东科学技术出版社,2000. GUO Dajun. Partial ordered method in nonlinear analysis[M]. Jinan: Shandong Science and Technology Press, 2000.
[12] DU Yihong. Fixed points of increasing operators in ordered Banach spaces and applications[J]. Applicable Analysis, 1990, 38:1-20.
[1] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
[2] 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95.
[3] 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12.
[4] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39.
[5] 宋君秋,贾梅,刘锡平,李琳. p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66.
[6] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[7] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[8] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[9] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[10] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[11] 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87.
[12] 孙艳梅. 奇异分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2014, 49(2): 71-75.
[13] 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83.
[14] 秦小娜,贾梅*,刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. J4, 2013, 48(10): 62-67.
[15] 范进军,张雪玲,刘衍胜. 时间测度上带p-Laplace算子的m点边值问题正解的存在性[J]. J4, 2012, 47(6): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!