您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 65-73.doi: 10.6040/j.issn.1671-9352.0.2022.052

• • 上一篇    

非齐次边界条件下弹性梁方程正解的多解性

孙晓玥   

  1. 西安电子科技大学数学与统计学院, 陕西 西安 710126
  • 发布日期:2023-03-27
  • 作者简介:孙晓玥(1999—),女,硕士研究生,研究方向为常微分方程边值问题. E-mail:sxy437760307@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061064)

Multiplicity of positive solutions for elastic beam equations under inhomogeneous boundary conditions

SUN Xiao-yue   

  1. School of Mathematics and Statistics, Xidian University, Xian 710126, Shaanxi, China
  • Published:2023-03-27

摘要: 研究带非齐次边界条件的两端简单支撑的弹性梁方程{Y (4)(x)=f(x,y), x∈(0,1),y(0)=0, y(1)=b, y″(0)=0, y″(1)=0多个正解的存在性,其中f∈C([0,1]×[0,∞),[0,∞)), b>0,且对给定的x∈[0,1], f(x,s)关于s单调递增。在适当的条件下,证明存在b*>0,使得当0*时至少存在两个正解;当b=b*时至少存在一个正解;当b>b*时无正解。该结果的证明基于上下解方法和拓扑度理论。

关键词: 非齐次, 简单支撑, 上下解, 拓扑度

Abstract: This paper studies the existence of multiple positive solutions for elastic beam equations simply supported at both ends with inhomogeneous boundary conditions{Y (4)(x)=f(x,y), x∈(0,1),y(0)=0, y(1)=b, y″(0)=0, y″(1)=0,where f∈C([0,1]×[0,∞),[0,∞)), b>0, and f(x,s) is a monotone increasing function with respect to s for a fixed x∈[0,1. Under appropriate conditions, there exists b*>0 such that the problem has at least two positive solutions for 0*, at least one positive solution for b=b*, and no positive solution for b>b*. The proof of the main results is based on the upper and lower solution method and topological degree theory.

Key words: inhomogeneous, simple support, upper and lower solution, topological degree

中图分类号: 

  • O175.8
[1] MA Ruyun, ZHANG Jihui, FU Shengmao. The method of lower and upper solutions for fourth-order two-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 1997, 216(1):416-422.
[2] BAI Zhanbing. The method of lower and upper solutions for a bending of an elastic equation[J]. Journal of Mathematical Analysis and Applications, 2000, 248(1):195-202.
[3] CABADA A, CID J A, SANCHEZ L. Positivity and lower and upper solutions for fourth-order boundary value problems[J]. Nonlinear Analysis, 2007, 67(5):1599-1612.
[4] MA Ruyun, WANG Haiyan. On the existence of positive solutions of fourth-order ordinary differential equations[J]. Journal of Mathematical Analysis and Applications, 1995, 59(2):225-231.
[5] CABADA A, ENGUICA R R. Positive solutions of fourth order problems with clamped beam boundary conditions[J]. Nonlinear Analysis, 2011, 74(10):3112-3122.
[6] MA Ruyun. Multiplicity of positive solutions for second-order three-point boundary value problems [J]. Computers and Mathematics with Applications, 2000, 40(2/3):193-204.
[7] DANG Q A, DANG Q L, NGO T K Q. A novel efficient method for nonlinear boundary value problems[J]. Numerical Algorithms, 2017, 76(2):427-439.
[8] DANG Q A, NGO T K Q. Existence results and iterative method of solving the cantilever beam equation with fully nonlinear term[J]. Nonlinear Analysis, 2017, 36(2):56-68.
[9] 吴红萍.四阶非齐次边值问题正解的存在性[J].西北师范大学学报(自然科学版), 2001, 37(4):19-23. WU Hongping. Existence of positive solutions for a fourth-order nonhomogeneous boundary value problem[J]. Journal of Northwest Normal University(Natural Science), 2001, 37(4):19-23.
[10] YAN Dongliang, MA Ruyun, SU Xiaoxiao. Global structure of one-sign solutions for a simply supported beam equation[J]. Journal of Inequalities and Applications, 2020, 112(3):425-441.
[1] 丁欢欢,何兴玥. 一类奇异k-Hessian方程耦合系统的特征值问题[J]. 《山东大学学报(理学版)》, 2023, 58(3): 55-63.
[2] 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80.
[3] 周艳霞,王薪茹,徐秀娟. 非标准增长条件下A-调和方程弱解的梯度估计[J]. 《山东大学学报(理学版)》, 2021, 56(6): 47-55.
[4] 杨晓梅,路艳琼,王瑞. 二阶离散Neumann边值问题的Ambrosetti-Prodi型结果[J]. 《山东大学学报(理学版)》, 2021, 56(2): 64-74.
[5] 徐秀娟,闫硕,朱叶青. 一类非齐次A-调和方程很弱解的全局正则性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 48-56.
[6] 李远飞,陈雪姣,石金诚. 二元混合物中的热传导方程Phragmén-Lindelöf二择性[J]. 《山东大学学报(理学版)》, 2020, 55(12): 1-12.
[7] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[8] 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48.
[9] 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41.
[10] 索春凤, 王贵君. 最大交互数对非齐次T-S模糊系统的潜在影响[J]. 山东大学学报(理学版), 2015, 50(08): 14-19.
[11] 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(03): 62-66.
[12] 张秋华, 刘利斌, 周恺. 时滞非局部扩散Lotka-Volterra 竞争系统行波解的存在性[J]. 山东大学学报(理学版), 2015, 50(01): 90-94.
[13] 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83.
[14] 孙艳梅1,赵增勤2. 一类二阶奇异脉冲微分方程解的存在性[J]. J4, 2013, 48(6): 91-95.
[15] 李凡凡,刘锡平*,智二涛. 分数阶时滞微分方程积分边值问题解的存在性[J]. J4, 2013, 48(12): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!