您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (5): 23-34.doi: 10.6040/j.issn.1671-9352.7.2023.082

• • 上一篇    下一篇

基于全局和局部关系的类属特征多标记分类算法

张珊丹1,翁伟1,2*,谢小竹1,魏博文1,王劲波3,文娟3   

  1. 1.厦门理工学院计算机与信息工程学院, 福建 厦门 361024;2.福建省模式识别与图像理解重点实验室, 福建 厦门 361024;3.厦门大学经济学院, 福建 厦门 361005
  • 发布日期:2024-05-09
  • 通讯作者: 翁伟(1979— ),男,副教授,硕士生导师,博士,研究方向为模式识别、复杂网络中的社区挖掘和图形深度学习等.E-mail: wwweng@xmut.edu.cn
  • 基金资助:
    国家社科基金资助项目(22BTJ006)

Global and local relationships based on multi-label classification algorithm with label-specific features

ZHANG Shandan1, WENG Wei1,2*, XIE Xiaozhu1, WEI Bowen1, WANG Jinbo3, WEN Juan3   

  1. 1. College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China;
    2. Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen 361024, Fujian, China;
    3. School of Economics, Xiamen University, Xiamen 361005, Fujian, China
  • Published:2024-05-09

摘要: 针对忽视局部关系中的二阶标记关系问题,本文提出了一种基于全局和局部关系的类属特征多标记分类(global and local relationships based on multi-label classification algorithm with label-specific features, LFGML)算法。通过全局关系的角度来获取类属特征,使用加权平均法计算每个实例的邻域信息,利用杰卡德相似度提取局部关系中的二阶标记关系。LFGML算法在10个多标记数据集Genbase、Medical、Arts、Health、Flags、Cal500、Yeast、Image、Education和Emotions进行了实验。结果表明,所提出的算法相对于其他对比算法在多标记分类中具有明显的的性能优势。

关键词: 多标记学习, 全局关系, 局部关系, 类属特征, 优化

Abstract: To address the problem of neglecting the second-order label relation in the local label correlation, we propose a new algorithm called global and local relationships based on multi-label classification algorithm with label-specific features(LFGML). Specifically, the label-specific features are firstly obtained through the perspective of global relations, then the neighbourhood information of each instance is calculated using the weighted average method. The second-order label relationship in the local relationship are extracted using Jaccard similarity. The LFGML algorithm is tested on ten multi-label datasets: Genbase, Medical, Arts, Health, Flags, Cal500, Yeast, Image, Education and Emotions. The results demonstrate that our proposed algorithm outperforms other comparison algorithms in multi-label classification.

Key words: multi-label learning, global label correlation, local label correlation, label-specific feature, optimization

中图分类号: 

  • TP181
[1] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9):1757-1771.
[2] ZHA Daochen,LI Chenliang. Multi-label dataless text classification with topic modeling[J]. Knowledge and Information Systems, 2018, 61:137-160.
[3] TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multi-label classification of music into emotions[C] //ISMIR. Kobe: International Society for Music Information Retrieval, 2008, 8:325-330.
[4] LIN Jinke, CAI Qingling, LIN Manying. Multi-label classification of fundus images with graph convolutional network and self-supervised learning[J]. IEEE Signal Processing Letters, 2021, 28:454-458.
[5] HUANG Xin, CHEN Boli, XIAO Lin, et al. Label-aware document representation via hybrid attention for extreme multi-label text classification[J]. Neural Processing Letters, 2021, 54:1-17.
[6] WEN Jie, WEI Lingwei, ZHOU Wei, et al. GCN-IA: user profile based on graph convolutional network with implicit association labels[C] // Computational Science-ICCS 2020: 20th International Conference. Amsterdam: Springer, 2020, 12139:355-364.
[7] SUN Zhenqiang, ZHANG Jia, DAI Liang, et al. Mutual information based multi-label feature selection via constrained convex optimization[J]. Neurocomputing, 2019, 329:447-456.
[8] BAYATI H, DOWLASTHAHI M B, PANIRI M. MLPSO: a filter multi-label feature selection based on particle swarm optimization[C] //2020 25th International Computer Conference. Tehrah: IEEE, 2020, 87:1-6.
[9] ZHANG Minling, WU Lei. Lift: multi-label learning with label-specific features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(1):107-120.
[10] ZHANG Jujie, FANG Min, LI Xiao. Multi-label learning with discriminative features for each label[J]. Neurocomputing, 2015, 154:305-316.
[11] WENG Wei,LIN Yaojin,WU Shunxiang, et al. Multi-label learning based on label specific features and local pairwise label correlation[J]. Neurocomputing, 2018, 273:385-394.
[12] GUO Y M, CHUNG F L, JAMES C G, et al. Leveraging label-specific discriminant mapping features for multi-label learning[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(2):1-23.
[13] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(8): 1819-1837.
[14] YÜCE A, GAO H, THIRAN J. Discriminant multi-label manifold embedding for facial action unit detection[C] // 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition(FG). Washington: IEEE, 2015, 6:1-6.
[15] ZHU Y, KWOK J T, ZHOU Z. Multi-label learning with global and local label correlation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 30(6):1081-1094.
[16] MA J H, CHIU B C Y, CHOW T W. Multilabel classification with group-based mapping: a framework with local feature selection and local label correlation[J]. IEEE Transactions on Cybernetics, 2020, 52(6):4596-4610.
[17] WENG Wei, WEI Bowen, KE Wen, et al. Learning label-specific features with global and local label correlation for multi-label classification[J]. Applied Intelligence, 2022, 53:17-33.
[18] WENG Wei, LI Yumen, LIU Jinghua, et al. Multi-label classification review and opportunities[J]. Journal of Network and Intelligent Computing, 2021, 6(2):255-275.
[19] LI Yukun, ZHANG Minling, GENG Xin. Leveraging implicit relative labeling-importance information for effective multi-label learning[C] //2015 IEEE International Conference on Data Mining. Greater Minneapolis: IEEE, 2015, 33(5):251-260.
[20] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048.
[21] FÜRNKRANZ J, HÜLLERMEIER E, LOZA M E, et al. Multilabel classification via calibrated label ranking[J]. Machine Learning, 2008, 73:133-153.
[22] MADJAROV G, GJORGJEVIKJ D, DELEV T. Efficient two stage voting architecture for pairwise multi-label classification[C] //AI 2010: Advances in Artificial Intelligence: 23rd Australasian Joint Conference. Adelaide: Springer, 2011, 64:164-173.
[23] ZHANG Y J, ZHAO T N, MIAO D Q, et al. Granular multilabel batch active learning with pairwise label correlation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2021, 52(5):3079-3091.
[24] WU Guoqiang, TIAN Yingjie, LIU Dalian. Cost-sensitive multi-label learning with positive and negative label pairwise correlations[J]. Neural Networks, 2018, 108:411-423.
[25] 罗森林,王海州,潘丽敏. 结合类属特征及因果发现的序列优化分类器链[J]. 北京理工大学学报, 2021, 41(12): 1293-1299. LUO Senlin, WANG Haizhou, PAN Limin. Sequence-optimised classifier chains combining class features and causal discovery[J]. Journal of Beijing Institute of Technology, 2021, 41(12):1293-1299.
[26] 邱继钊,计华,张化祥. 用于多标记学习的局部顺序分类器链算法[J]. 计算机应用研究, 2013, 30(9):2606-2609. QIU Jizhao, JI Hua, ZHANG Huaxiang. Local sequential classifier chaining algorithm for multi-labelling learning[J]. Computer Applications Research, 2013, 30(9):2606-2609.
[27] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85:333-359.
[28] JI Shuiwang, TANG Lei, YU Shipeng, et al. Extracting shared subspace for multi-label classification[C] //Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas: Association for Computing Machinery, 2008, 8:381-389.
[29] XU Linli, WANG Zhen, SHEN Zefan, et al. Learning low-rank label correlations for multi-label classification with missing labels[C] //2014 IEEE International Conference on Data Mining. Shanghai: IEEE, 2014,125:1067-1072.
[30] HUANG Shengjun, ZHOU Zhihua. Multi-label learning by exploiting label correlations locally[C] // Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver: AAAI Press, 2012, 26:949-955.
[31] HUANG Jun, LI Guorong, HUANG Qingming, et al. Learning label specific features for multi-label classification[C] // 2015 IEEE International Conference on Data Mining. Washington: IEEE, 2015, 67:181-190.
[32] GUAN Yuanyuan, LI Wenhui, ZHANG Boxiang, et al. Multi-label classification by formulating label-specific features from simultaneous instance level and feature level[J]. Applied Intelligence, 2021, 51:3375-3390.
[33] WENG Wei, CHEN Yannan, CHEN Chinling, et al. Non-sparse label specific features selection for multi-label classification[J]. Neurocomputing, 2020, 377: 85-94.
[34] HUANG Jun, XU Linchuan, QIAN Kun, et al. Multi-label learning with missing and completely unobserved labels[J]. Data Mining and Knowledge Discovery, 2021, 35:1061-1086.
[35] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202.
[36] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society(Series B:Methodological), 1996, 58(1):267-288.
[37] HUANG Jun, LI Guorong, HUANG Qingming, et al. Joint feature selection and classification for multilabel learning[J]. IEEE Transactions on Cybernetics, 2017, 48(3):876-889.
[38] DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7:1-30.
[1] 程雨轩,毛煜,张小清,曾艺祥,林耀进. 基于次相关特征和邻域互信息的在线多标记特征选择算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 70-81.
[2] 宋苏洋,叶军,曾广财,孙清. 基于优化可辨识矩阵的多粒度粗糙集属性约简算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 52-62.
[3] 韦修喜,彭茂松,黄华娟. 基于改进蝴蝶算法的水文地质参数优化[J]. 《山东大学学报(理学版)》, 2024, 59(3): 37-50.
[4] 秦宏伍,王立铮,傅渝,隋沐翾,何秉高. 基于多策略结合的灰狼优化算法及应用[J]. 《山东大学学报(理学版)》, 2024, 59(3): 51-60.
[5] 罗兴隆,贺兴时,周洁,杨新社. 基于非洲秃鹫优化算法改进的密度峰值聚类[J]. 《山东大学学报(理学版)》, 2024, 59(1): 46-55,71.
[6] 房明磊,丁德凤,王敏,盛雨婷. 一种求解非线性方程组的改进Shamanskii-like Levenberg-Marquardt算法[J]. 《山东大学学报(理学版)》, 2023, 58(8): 118-126.
[7] 高琦,戴洪帅,武艳华. 基于MPEWMA控制图的串联排队网络的监测与控制[J]. 《山东大学学报(理学版)》, 2023, 58(8): 104-110, 117.
[8] 徐华畅,许倩,赵钰琳,梁峰宁,徐凯,朱红. 基于改进EfficientNetV2的脑胶质瘤IDH1突变状态预测方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 60-66.
[9] 刘海燕,拓守恒. 求解全局优化问题的一个新的填充函数算法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 80-87.
[10] 张金珂,张建刚. 基于改进粒子群优化算法的信号检测及故障诊断[J]. 《山东大学学报(理学版)》, 2023, 58(5): 63-75.
[11] 张志浩,林耀进,卢舜,吴镒潾,王晨曦. 流缺失标记环境下的多标记特征选择[J]. 《山东大学学报(理学版)》, 2022, 57(8): 39-52.
[12] 孟旭东. 集合优化问题解集的稳定性和扩展适定性[J]. 《山东大学学报(理学版)》, 2022, 57(2): 98-110.
[13] 王松华,罗丹,黎勇. 一类新型的修正WYL共轭梯度算法[J]. 《山东大学学报(理学版)》, 2021, 56(9): 87-95.
[14] 邹难,谢磊,金宗凯,蔡兴茂,邵晨. 考虑承载能力的大型物流园区运输路径优化研究——以临沂市某物流园区为例Symbol`@@[J]. 《山东大学学报(理学版)》, 2021, 56(7): 11-20.
[15] 潘澔,高尚. GM(1,1)模型的性质及改进[J]. 《山东大学学报(理学版)》, 2021, 56(11): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许春华,高宝玉*,卢磊,徐世平,曹百川,岳钦艳,张建 . 城市纳污河道废水化学强化一级处理的研究[J]. J4, 2006, 41(2): 116 -120 .
[2] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .
[3] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[4] 谢云龙,杜英玲 . 函数S-粗集与规律积分度量[J]. J4, 2007, 42(10): 118 -122 .
[5] 仇华海 姚云飞 王志刚 陈斯养. 非线性泛函微分系统的指数稳定[J]. J4, 2009, 44(9): 84 -89 .
[6] 张明,路慧芹 . 二阶非线性脉冲周期边值问题多个正解的存在性[J]. J4, 2009, 44(4): 51 -56 .
[7] 李秋英,张凤琴,王文娟. 不育控制下具有脉冲生育的单种群模型[J]. 山东大学学报(理学版), 2014, 49(06): 85 -90 .
[8] 黄贤立,罗冬梅. 倾向性文本迁移学习中的特征重要性研究[J]. J4, 2010, 45(7): 13 -17 .
[9] 高正晖,罗李平. 含分布时滞与阻尼项的三阶非线性微分方程的Philos型振动[J]. J4, 2013, 48(4): 85 -90 .
[10] 李志荣 . 广义m阶Bell数和广义m阶有序Bell数的计算公式[J]. J4, 2007, 42(2): 59 -63 .