您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 93-103.doi: 10.6040/j.issn.1671-9352.0.2023.442

• • 上一篇    

一类具有双垂直传播和媒介呈Logistic增长的媒介传染病模型

李璐,张瑞霞*   

  1. 中北大学数学学院, 山西 太原 030051
  • 发布日期:2025-04-08
  • 通讯作者: 张瑞霞(1980— ),女,副教授,博士,研究方向为生物数学. E-mail:zhangruixia@nuc.edu.cn
  • 作者简介:李璐(1999— ),女,硕士研究生,研究方向为生物数学. E-mail:852373914@qq.com*通信作者:张瑞霞(1980— ),女,副教授,博士,研究方向为生物数学. E-mail:zhangruixia@nuc.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12001501,12071445)

A vector-borne diseases model with dual vertical transmission and Logistic growth for vector

LI Lu, ZHANG Ruixia*   

  1. School of Mathematics, North University of China, Taiyuan 030051, Shanxi, China
  • Published:2025-04-08

摘要: 媒介传染病是通过生物媒介传播的传染性疾病,蚊媒传染病最为常见。本文考虑宿主和媒介的双垂直传播以及媒介Logistic增长,建立媒介传染病传播模型,求出基本再生数R0,分析模型平衡点的存在性与全局稳定性结果显示,R0<1时,无病平衡点全局渐近稳定;R0>1时,正平衡点全局渐近稳定。最后通过数值模拟验证结论,同时揭示媒介呈Logistic增长时,如果不捕杀蚊虫,媒介传染病始终流行,当蚊虫灭杀率达到一定比例时,媒介传染病逐渐消亡,提高对蚊子的灭杀率会对传染病防治产生积极影响。

关键词: 媒介传染病, 稳定性, 双垂直传播, Logistic增长, 生物防治

Abstract: Vector-borne diseases are infectious diseases transmitted by vectors, and mosquito-borne diseases are the most common. Considering the dual vertical transmission of host and vector and Logistic growth for vector, the authors establish a vector-borne disease transmission model, calculate the basic reproduction number, analyze the existence and global stability of the equilibrium points, and show that when R0<1, the disease-free equilibrium is globally asymptotically stable, and when R0>1, the positive equilibrium is globally asymptotically stable. Finally, the numerical simulation verifies the conclusion, and reveals that when the vector is growing with Logistic, if the mosquito is not killed, the vector-borne disease is always present, and when the mosquito killing rate reaches a certain proportion, the vector-borne disease would eventually die out, and improving the killing rate of mosquitoes will have a positive impact on the prevention and control of infectious diseases.

Key words: vector-borne diseases, stability, dual vertical transmission, Logistic growth, biocontrol

中图分类号: 

  • O175
[1] DAS U, AHMED R, KASHYAP A, et al. Japanese encephalitis in assam: a sentinel case[J]. International Journal of Bio-resource and Stress Management, 2023, 14(1):153-160.
[2] 徐建荣. 登革热及其防治的研究进展[J]. 上海预防医学,2005,17(4):167-169. XU Jianrong. Research progress on dengue fever and its prevention[J]. Shanghai Journal of Preventive Medicine, 2005, 17(4):167-169.
[3] 韦万春. 关注黄热病疫情及其防控措施[J]. 中国海关,2022,(8):52-53. WEI Wanchun. Focus on yellow fever epidemic and its prevention and control measures[J]. China Customs, 2022,(8):52-53.
[4] 施圣玉. 西尼罗河热的防控[J]. 畜牧与饲料科学,2010,31(11):160-161. SHI Shengyu. Prevention and control of West Nile fever[J]. Animal Husbandry and Feed Science, 2010, 31(11):160-161.
[5] 世界卫生组织. 病媒传播的疾病[EB/OL].(2020-03-02)[2023-12-17]. https://www.who.int/zh/news-room/fact-sheets/detail/2023 03 17/en/.
[6] GUO Xiaoxia, ZHAO Tongyan, DONG Yande, et al. Survival and replication of dengue-2 virus in diapausing eggs of Aedes albopictus(Diptera: Culicidae)[J]. Journal of Medical Entomology, 2007, 44(3):492-497.
[7] 闫娟娟.具有控制策略的媒介传染病模型的稳定性分析[J].滨州学院学报,2022,38(4):42-48. YAN Juanjuan. Stability analysis of vector-borne disease model with control strategy[J]. Journal of Binzhou University, 2022, 38(4):42-48.
[8] 刘晨,窦霁虹,李玉峰,等. 一类具有标准发生率和双垂直传播的媒介传染病模型分析[J]. 纯粹数学与应用数学,2021,37(2):198-208. LIU Chen, DOU Jihong, LI Yufeng, et al. Analysis of a vector-borne infectious diseases model with standard incidence and double vertical transmission[J]. Pure and Applied Mathematics, 2021, 37(2):198-208.
[9] VAN DEN DRIESSCHE P, WATMOUG J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48.
[10] CASTILLO-CHAVEZ C, THIEME H. Asymptotically autonomous epidemic models[J]. Mathematics, Medicine, 1994.
[11] LI Michael Y, MULDOWNEY J S. A geometric approach to global-stability problems[J]. SIAM Journal on Mathematical Analysis, 1996, 27(4):1070-1083.
[12] LI M Y, GREAF J R, WANG L C, et al. Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences, 1999, 160(2):191-213.
[1] 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49.
[2] 秦佳欣,李淑萍. 复杂网络中带有自我防护意识的SEIR模型分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 60-71.
[3] 买阿丽,孙国伟. 捕食者斑块间扩散的集合种群模型的稳定性分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 20-28.
[4] 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83.
[5] 苗卉,夏米西努尔·阿布都热合曼. 具有胞间传播和蛋白酶抑制剂的时滞HIV模型的动力学分析[J]. 《山东大学学报(理学版)》, 2024, 59(4): 90-97.
[6] 阿迪力·艾力,开依沙尔·热合曼. 求解广义Burgers-Fisher方程的微分求积法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 30-39.
[7] 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88.
[8] 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103.
[9] 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91.
[10] 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81.
[11] 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59.
[12] 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96.
[13] 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28.
[14] 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53.
[15] 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!