您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 135-142.doi: 10.6040/j.issn.1671-9352.0.2023.337

• • 上一篇    

捕食-食饵系统在离散斑块环境下强迫波的存在性

朱巧玲,史振霞*   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2025-07-25
  • 通讯作者: 史振霞(1982— ),女,副教授,博士,研究方向为微分方程与动力学. E-mail:shizhx08@mail.lzjtu.cn
  • 作者简介:朱巧玲(1998— ),女,硕士研究生,研究方向为微分方程与动力学. E-mail:1363061605@qq.com*通信作者:史振霞(1982— ),女,副教授,博士,研究方向为微分方程与动力学. E-mail:shizhx08@mail.lzjtu.cn
  • 基金资助:
    国家自然科学基金资助项目(11904275)

Existence of forced waves for a predator-prey system in a discrete shifting habitat

ZHU Qiaoling, SHI Zhenxia*   

  1. College of Mathematical and Physical, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2025-07-25

摘要: 针对在离散斑块环境下的三物种捕食-食饵系统,使用Schauder不动点定理并构造合适的上下解,得到了强迫波的存在性。

关键词: 捕食-食饵系统, 强迫波, 存在性, Schauder不动点定理, 上下解方法

Abstract: This paper studies a three-species predator-prey model in discrete patch environments, the existence of forced waves is obtained by using Schauders fixed point theorem and constructing appropriate upper-lower solutions.

Key words: predator-prey system, forced wave, existence, Schauder fixed-point theorem, upper-lower solutions

中图分类号: 

  • O175.8
[1] ALFARO M, BERESTYCKI H, RAOUL G. The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition[J]. SIAM Journal on Mathematical Analysis, 2017, 49(1):562-596.
[2] BERESTYCKI H, DIEKMANN O, NAGELKERKE C J, et al. Can a species keep pace with a shifting climate?[J]. Bulletin of Mathematical Biology, 2009, 71(2):399-429.
[3] BERESTYCKI H, FANG J. Forced waves of the Fisher-KPP equation in a shifting environment[J]. Journal of Differential Equations, 2018, 264(3):2157-2183.
[4] ROSSI L, BERESTYCKI H. Reaction-diffusion equations for population dynamics with forced speed II-cylindrical-type domains[J]. Discrete & Continuous Dynamical Systems, 2009, 25(1):19-61.
[5] FANG Jian, LOU Yijun, WU Jianhong. Can pathogen spread keep pace with its host invasion?[J]. SIAM Journal on Applied Mathematics, 2016, 76(4):1633-1657.
[6] HU Haijun, Zou Xingfu. Existence of an extinction wave in the Fisher equation with a shifting habitat[J]. Proceedings of the American Mathematical Society, 2017, 145(11):4763-4771.
[7] YANG Yong, WU Chufen, LI Zunxian. Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change[J]. Applied Mathematics and Computation, 2019, 353:254-264.
[8] DONG Fangdi, LI Bingtuan, LI Wantong. Forced waves in a Lotka-Volterra competition-diffusion model with a shifting habitat[J]. Journal of Differential Equations, 2021, 276:433-459.
[9] 张道祥,孙光讯,徐明丽,等. 带有时滞和非线性收获效应的捕食者-食饵系统的空间动力学[J]. 吉林大学学报(理学版),2018,56(3):515-522. ZHANG Daoxiang, SUN Guangxun, XU Mingli, et al. Spatial dynamics in predator-prey system with time delay and nonlinear harvesting effect[J]. Journal of Jilin University(Science Edition), 2018, 56(3):515-522.
[10] ZHNG Zewei, WANG Wendi, YANG Jiangtao. Persistence versus extinction for two competing species under a climate change[J]. Nonlinear Analysis(Modelling and Control), 2017, 22(3):285-302.
[11] WANG Jiabin, WU Chufen. Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats[J]. Nonlinear Analysis(Real World Applications), 2021, 58:103208.
[12] CHOI W, GUO J S. Forced waves of a three species predator-prey system in a shifting environment[J]. Journal of Mathema-tical Analysis and Applications, 2022, 514(1):126283.
[13] PANG Liyan, WU Shilian. Propagation dynamics for lattice differential equations in a time-periodic shifting habitat[J]. Zeitschrift für Angewandte Mathematik und Physik, 2021, 72(3):93.
[14] 赵海琴. 二维格上时滞微分方程的行波解[J]. 咸阳师范学院学报,2010,25(4):10-12. ZHAO Haiqin. Traveling wave solutions in a 2-D lattice delayed differential equation without quasi-monotonicity[J]. Journal of Xianyang Normal University, 2010, 25(4):10-12.
[15] SHI Zhenxia, LI Wantong, CHENG Cuiping. Stability and uniqueness of traveling wavefronts in a two-dimensional lattice differential equation with delay[J]. Applied Mathematics and Computation, 2009, 208(2):484-494.
[16] CHENG Cuiping, LI Wantong, WANG Zhicheng. Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice[J]. Nonlinear Analysis(Real World Applications), 2012, 13(4):1873-1890.
[17] MA Shiwang. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem[J]. Journal of Differential Equations, 2001, 171(2):294-314.
[1] 王丽媛,马如云. 带有导数项的二阶Neumann边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2025, 60(5): 50-55.
[2] 蔡中博,赵继红. 一类趋化流体模型大解的整体存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 84-91.
[3] 石轩荣. 一类二阶半正问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 89-96.
[4] 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105.
[5] 任倩,杨和. 一类Riemann-Liouville分数阶发展包含mild解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(4): 76-84.
[6] 段对花,高承华,王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 《山东大学学报(理学版)》, 2022, 57(3): 62-67.
[7] 欧阳柏平,肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 59-65.
[8] 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21.
[9] 杨晓梅,路艳琼,王瑞. 二阶离散Neumann边值问题的Ambrosetti-Prodi型结果[J]. 《山东大学学报(理学版)》, 2021, 56(2): 64-74.
[10] 侯春娟,李远飞,郭连红. 一类广义不可压Boussinesq方程组解的局部存在性及爆破准则[J]. 《山东大学学报(理学版)》, 2021, 56(2): 97-102.
[11] 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83.
[12] 张瑞燕. 一类非线性三阶三点边值问题正解的存在性、不存在性及多解性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 52-58.
[13] 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21.
[14] 杨虎军,韩晓玲. 一类非自治四阶常微分方程正周期解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 109-114.
[15] 安佳辉,陈鹏玉. 变分数阶微分方程初值问题解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!