《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 76-84.doi: 10.6040/j.issn.1671-9352.0.2021.414
• • 上一篇
任倩,杨和*
REN Qian, YANG He*
摘要: 用多值映射的不动点定理和算子半群理论讨论了非紧半群情形下一类Riemann-Liouville分数阶半线性发展包含非局部问题mild解的存在性,并给出了抽象结果的应用举例。
中图分类号:
[1] HILFER R. Applications of fractional calculus in physics[M]. Singapore: World Scientific, 2000. [2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006. [3] DU Maolin, WANG Zaihua. Initialized fractional differential equations with Riemann-Liouville fractional-order derivative[J]. The European Physical Journal Special Topics, 2011, 193(1):49-60. [4] ZHOU Yong, ZHANG Lu, SHEN Xiaohui. Existence of mild solutions for fractional evolution equations[J]. Journal of Integral Equations and Applications, 2013, 4(25):557-585. [5] LAKSHMIKANTHAM V, VATSALA S A. Basic theory of fractional differential equations[J]. Nonlinear Analysis, 2008, 69(8):2677-2682. [6] AGARWAL P R, LAKSHMIKANTHAM V, NIETO J J. On the concept of solution for fractional differential equations with uncertainty[J]. Nonlinear Analysis, 2010, 72(6):2859-2862. [7] YANG Min, WANG Qiru. Approximate controllability of Riemann-Liouville fractional differential inclusions[J]. Applied Mathematics and Computation, 2016, 274:267-281. [8] LIANG Jin, YANG He. Controllability of fractional integro-differential evolution equations with nonlocal condition[J]. Applied Mathematics and Computation, 2015, 254:20-29. [9] BANAS J. On measures of noncompactness in Banach spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 1980, 21(1):131-143. [10] HEINZ P H. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions[J]. Nonlinear Analysis, 1983, 7(12):1351-1371. [11] ALSARORI A N, GHADLE P K. On the mild solution for nonlocal impulsive fractional semilinear differential inclusion in Banach spaces[J]. Journal of Mathematical Modeling, 2018, 6(2):239-258. [12] KAMENSKII M, OBUKHOVSKII V, ZECCA P. Condensing multivalued maps and semilinear differential inclusions in Banach spaces[M]. Berlin: Walter de Gruyter and Co, 2001. [13] AGARWAL P R, MEEHAN M, OREGAN D. Fixed point theory and applications[M]. Cambridge: Cambridge University Press, 2001. [14] ALSARORI A N, GHADLE P K. Nonlocal fractional differential inclusions with impulse effects and delay[J]. Journal of the Korean Society for Industrial and Applied Mathematics, 2020, 24(2):229-242. |
[1] | 段对花,高承华,王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 《山东大学学报(理学版)》, 2022, 57(3): 62-67. |
[2] | 欧阳柏平,肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 59-65. |
[3] | 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21. |
[4] | 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83. |
[5] | 侯春娟,李远飞,郭连红. 一类广义不可压Boussinesq方程组解的局部存在性及爆破准则[J]. 《山东大学学报(理学版)》, 2021, 56(2): 97-102. |
[6] | 张瑞燕. 一类非线性三阶三点边值问题正解的存在性、不存在性及多解性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 52-58. |
[7] | 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21. |
[8] | 杨丽娟. 一类非线性四阶常微分方程边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 101-108. |
[9] | 杨虎军,韩晓玲. 一类非自治四阶常微分方程正周期解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 109-114. |
[10] | 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41. |
[11] | 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95. |
[12] | 何燕琴,韩晓玲. 带积分边界条件的四阶边值问题的单调正解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 32-37. |
[13] | 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39. |
[14] | 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96. |
[15] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
|