《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 111-120.doi: 10.6040/j.issn.1671-9352.0.2017.565
• • 上一篇
杨飞,刘希强*
YANG Fei, LIU Xi-qiang*
摘要: 对一类变系数GKP方程求解,首先构造出解的形式并结合不同的辅助方程的新解及相应的Bäcklund变换,在数学计算软件的帮助下获得了该方程的无穷序列类孤子新精确解。这些解的类型包括Jacobi椭圆函数型、三角函数型、指数函数型、双曲函数型等。然后又使用假设孤立波方法研究这一类变系数GKP方程,进而得到了另类的孤立波解。
中图分类号:
[1] 许晓革,张小媛,孟祥花.Bell多项式在变系数Gardner-KP方程中的应用[J].量子电子学报,2016,33(6):671-679. XU Xiaoge, ZHANG Xiaoyuan, MENG Xianghua. The application of bell polynomials in variable coefficient Gardner-KP equation[J]. Chinese Journal of Quantum Electronics, 2016, 33(6):671-679. [2] WAZWAZ A M. Soliton and sigular solitons for the Gardner-KP equation[J]. Applied Mathematics and Computation, 2008, 204:162-169. [3] 严经坤.改进的F-展开法及其在一些孤立子方程中的应用[D].郑州:郑州大学,2009. YAN Jingkun. The improved F-expansion method and its application to some soliton equation[D]. Zhengzhou: Zhengzhou University, 2009. [4] XU Bin, LIU Xiqiang. Classification,reduction,group invariant solutions and conservation laws of the Gardner-KP equation[J]. Applied Mathematics and Computation, 2009, 215:1244-1250. [5] SHAKEEL M, MOHYUD D. Soliton solutions for the positive Gardner-KP equation by(G'/G)-expansion method[J]. Ain Shams Engineering Journal, 2014, 5:951-958. [6] 李德生,张鸿庆.(2+1)维色散水波系统的非行波解的新族[J].中国物理,2004,13:1377-1381. LI Deshen, ZHANG Hongqing. New families of non-travelling wave solutions to the(2+1)-dimensional modified dispersive water-wave system[J]. Chinese Physics, 2004, 13:1377-1381. [7] 马松华,方建平.扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用[J].物理学报,2012,61(18):180505:1-6. MA Songhua, FANG Jingping. Peaked soliton solutions and interaction between solitons for the extended(2+1)-dimensional shallow water wave equation[J]. Acta Physical Sinica, 2012, 61(18):180505:1-6. [8] 套格图桑,伊丽娜.Camassa-Holm-r方程的无穷序列类孤子新解[J].物理学报,2014,3(12):1-9. Taogetusang, YI Lina. The infinite sequence class soliton solutions of the Camassa-Holm-r equation[J]. Acta Physical Sinica, 2014, 3(12):1-9. [9] 套格图桑,斯仁道尔吉.构造变系数非线性发展方程精确解的一种方法[J].物理学报,2009,58(4):2121-2126. Taogetusang, Sirendaoerji. A method for constructing exact solutions of nonlinear evolution equations with variable coefficients[J]. Acta Physical Sinica, 2009, 58(4):2121-2126. [10] 套格图桑,那仁满都拉.第二种椭圆方程构造变系数非线性发展方程的无穷序列精确解[J].物理学报,2011,60(9):1-12. Taogetusang, Narenmandula. The second kind of elliptic equation constructs the infinite sequence exact solution of the nonlinear evolution equation of the variable coefficient[J]. Acta Physical Sinica, 2011, 60(9):1-12. [11] 白玉梅,套格图桑.变系数(2+1)维Broer-Kaup方程的无穷序列新精确解[J].内蒙古师范大学学报(自然科学版),2015,44(6):743-748. BAI Yumei, Taogetusang. New exact solutions in infinite sequence of variable coefficient(2+1)-dimensional Broer-Kaup equation[J]. Journal of Inner Mongolia Normal University(Natural Science Edition), 2015, 44(6):743-748. [12] 套格图桑,斯仁道尔吉,李姝敏. Riccati方程的新应用[J].中国物理B,2010,19(8):080303:1-8. Taogetusang, Sirendaoerji, LI Shumin. New application to Riccati equation[J]. Chinese Physics B, 2010, 19(8):080303:1-8. [13] 王岗伟,刘希强,张颖元.变系数mKdV方程的精确解[J].井冈山大学学报(自然科学版),2012,33(5):1-5. WANG Gangwei, LIU Xiqiang, ZHANG Yiyuan. Exact solutions of mKdV equations with variable coefficients[J]. Journal of Jinggangshan University(Natural Science), 2012, 33(5):1-5. [14] 孙玉真,王振立,王岗伟,等.广义变系数五阶KdV和BBM方程的孤立波解[J].量子电子学报,2013,30(4):398-404. SUN Yuzhen, WANG Zhenli, WANG Gangwei, et al. Soliton solutions for generalized fifth-order KdV and BBM equations with variable coefficients[J]. Chinese Journal of Quantum Electronics, 2013, 30(4):398-404. [15] 洪宝剑,卢殿臣.变系数(2+1)维Broer-Kaup方程新的类孤子解[J].原子与分子物理学报,2008,25(1):130-134. HONG Baojian, LU Dianchen. New soliton-like solutions of the variable coefficient(2+1)-dimensional Broer-Kaup equation[J]. Atomic and Molecular Physics, 2008, 25(1):130-134. [16] WAZWAZ A M, TRIKI H. Soliton solutions for a generalized KdV and BBM equations with-time-dependent coefficients[J]. Communications in Nonlinear Science & Numerical Simulation, 2011, 16:1122-1126. |
[1] | 冯孝周,徐敏,王国珲. 具有B-D反应项与毒素影响的捕食系统的共存解[J]. 《山东大学学报(理学版)》, 2018, 53(12): 53-61. |
[2] | 马霞,姚美萍. 汉坦病毒传播模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 48-52. |
[3] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[4] | 李会会,刘希强,辛祥鹏. 变系数Benjamin-Bona-Mahony-Burgers方程的微分不变量和精确解[J]. 山东大学学报(理学版), 2018, 53(10): 51-60. |
[5] | 杜广伟. 具有次临界增长的椭圆障碍问题解的正则性[J]. 山东大学学报(理学版), 2018, 53(6): 57-63. |
[6] | 董亚莹. 一类空间退化的捕食-食饵模型的全局分歧结构[J]. 山东大学学报(理学版), 2018, 53(4): 76-84. |
[7] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[8] | 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42. |
[9] | 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60. |
[10] | 段双双,钱媛媛. Keller-Segel型交叉扩散方程组柯西问题解的逐点估计[J]. 山东大学学报(理学版), 2017, 52(4): 40-47. |
[11] | 李玉,刘希强. 扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解[J]. 山东大学学报(理学版), 2017, 52(2): 77-84. |
[12] | 张道祥, 赵李鲜, 胡伟. 一类三种群食物链模型中交错扩散引起的Turing不稳定[J]. 山东大学学报(理学版), 2017, 52(1): 88-97. |
[13] | 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122. |
[14] | 宋萌萌,尚海锋. 具测度初值的非线性抛物方程组的Cauchy问题[J]. 山东大学学报(理学版), 2016, 51(10): 41-47. |
[15] | 李月霞,张丽娜,张晓杰. 2维Lengyel-Epstein模型的分支结构[J]. 山东大学学报(理学版), 2016, 51(8): 74-78. |
|