《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 81-85.doi: 10.6040/j.issn.1671-9352.0.2022.126
• • 上一篇
徐波1,高荣海2,卢琳璋1,3,游泰杰1
XU Bo1, GAO Rong-hai2, LU Lin-zhang1,3, YOU Tai-jie1
摘要: 设自然数n≥4, Xn={1,2,…,n}。利用非单点性定义全变换半群的一类新的子半群——1-奇异变换半群,记作Tn(1)。 通过幂等元分析法确定Xn上1-奇异变换半群Tn(1)的最小生成集之后,证明Tn(1)的秩为n。
中图分类号:
[1] GOMES G M S, HOWIE J M. On the ranks of certain finite semigroups of transformations[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1987, 101(3):395-403. [2] HOWIE J M, MCFADDEN R B. Idempotent rank in finite full transformation semigroups[J]. Proceedings of the Royal Society of Edinburgh Section A:Mathematics, 1990, 114(3/4):161-167. [3] GOMES G M S, HOWIE J M. On the ranks of certain semigroups of order-preserving transformations [J]. Semigroup Forum, 1992, 45(1):272-282. [4] UMAR A. On the ranks of certain finite semigroups of order-decreasing transformations [J]. Portugaliae Mathematica, 1996, 53(1):23-34. [5] HOWIE J M, RUSKUC N, HIGGINS P M. On relative ranks of full transformation semigroups[J]. Communications in Algebra, 1998, 26(3):733-748. [6] YANG Xiuliang. On the nilpotent ranks of the factors of order-preserving transformation semigroups[J]. Semigroup Forum, 1998, 57(3):331-340. [7] BARNES G, LEVI I. On idempotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2005, 70(1):81-96. [8] LEVI I. Nilpotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2006, 72(3):459-476. [9] ZHAO Ping. On the ranks of certain semigroups of orientation preserving transformations[J]. Communications in Algebra, 2011, 39(11):4195-4205. [10] ZHAO Ping, FERNANDES V H. The ranks of ideals in various transformation monoids[J]. Communications in Algebra, 2015, 43(2):674-692. [11] ZHAO Ping, YOU Taijie, CHEN Yunkun. On the(m,r)-potent ranks of certain semigroups of transformations[J]. Journal of Algebra and Its Applications, 2016, 15(1):1650018. [12] ZHAO P. On the nilpotent ranks of the principal factors of orientation-preserving transformation semigroups[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41(4):1795-1803. [13] 金久林,游泰杰,徐波. 有限全变换半群变种具有某种性质的极大子半群[J]. 吉林大学学报(理学版), 2018, 56(3):549-555. JIN Jiulin, YOU Taijie, XU Bo. Maximal subsemigroups of some properties in variants of finite full transformation semigroups[J]. Journal of Jilin University(Science Edition), 2018, 56(3):549-555. [14] GAO Ronghai, XU Bo, ZENG Jiwen. On the semigroups of partial one-to-one distance preserving mappings with respect to a fixed point[J]. Journal of Lanzhou University(Natural Sciences), 2018, 54(6):836-840. [15] 吴江燕.半群POn的高次方准幂等元[J].贵州师范大学学报(自然科学版),2020,38(1):44-49. WU Jiangyan. The quasi-idempotents of high power of the semigroup POn[J]. Journal of Guizhou Normal University(Natural Sciences), 2020, 38(1):44-49. [16] 黄朝霞,罗永贵.半群SYn-1 的秩[J].贵州师范大学学报(自然科学版),2021,39(3):61-64. HUANG Zhaoxia, LUO Yonggui. On the rank of the semigroup SYn-1[J]. Journal of Guizhou Normal University(Natural Sciences), 2021, 39(3):61-64. |
[1] | 李心雨,范辉,刘惊雷. 基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 《山东大学学报(理学版)》, 2022, 57(8): 21-38. |
[2] | 刘敏,李玉林. S-半群的完备化[J]. 《山东大学学报(理学版)》, 2022, 57(6): 23-30. |
[3] | 任倩,杨和. 一类Riemann-Liouville分数阶发展包含mild解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(4): 76-84. |
[4] | 乔兴斌,乔虎生. 关于条件(E'P)的研究[J]. 《山东大学学报(理学版)》, 2022, 57(2): 56-60. |
[5] | 王晶,宫春梅. Tropical矩阵半群[J]. 《山东大学学报(理学版)》, 2022, 57(2): 50-55. |
[6] | 崔倩,宫春梅,王惠. 半适当半群上Rees矩阵半群的(~)-好同余[J]. 《山东大学学报(理学版)》, 2022, 57(2): 61-66. |
[7] | 钟堃琰,刘惊雷. 基于低秩类间稀疏判别最小二乘回归的图像分类[J]. 《山东大学学报(理学版)》, 2022, 57(11): 89-101. |
[8] | 张钰倩,张太雷. 具有复发效应的SEAIR模型及在新冠肺炎传染病中的应用[J]. 《山东大学学报(理学版)》, 2022, 57(1): 56-68. |
[9] | 雷燕,乔虎生. 关于满足条件(P')的循环S-系[J]. 《山东大学学报(理学版)》, 2021, 56(8): 49-52. |
[10] | 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21. |
[11] | 张传军,赵海清. 半群PCn的极大幂等元生成子半群[J]. 《山东大学学报(理学版)》, 2021, 56(12): 7-10. |
[12] | 宫春梅,高雯,袁莹. 弱型σ半群的结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 87-91. |
[13] | 宫春梅,王惠,吴丹丹. 超富足半群上(*)-好同余研究[J]. 《山东大学学报(理学版)》, 2020, 55(8): 98-101. |
[14] | 宫春梅,张俊梅. 正则纯正幂么半群并半群上的(~)-好同余[J]. 《山东大学学报(理学版)》, 2020, 55(4): 6-12. |
[15] | 乔虎生,许阳. C(P)系的一个新推广[J]. 《山东大学学报(理学版)》, 2020, 55(4): 21-24. |
|